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Resumo

O tratamento de dados e o controle de movimento do difratémetro sdo aspectos importantes que
podem melhorar o sucesso de um experimento de difracdo de raios X significativamente. Um processamento
acurado do sinal detectado em resultados com significado fisico levam a um rapido entendimento do objeto
de estudo, além de auxiliar na capacidade de decisao. Similarmente, uma interface amigavel e intuitiva
de controle para experimentos que depende, tanto no movimento de amostra, quanto do de detector pode
impactar significativamente na experiéncia geral e otimizar a utilizacdo do tempo de linha. Mapas do espaco
reciproco, de (PIETSCH; HOLY; BAUMBACH, 2006) sao exemplos que poderiam tirar vantagem dessa
abordagem ao utilizar os detectores de area disponiveis na linha EMA do Sirius. Em poucas palavras, é
necessério a transformacgao dos dados no sistema de coordenadas do laboratério (angulos) para o espago
reciproco (vetor ()). Por cima disso, a ferramenta para o controle seria também capaz de mover e sondar
diregoes distintas do espago reciproco dependendo das caracteristicas da amostra. Todo esse processo tem
o potencial de ser feito “por de baixo dos panos”, fazendo com que seja facil para os usuarios controlarem o
experimento e ter seus resultados ja durante o tempo de linha. Com isso em mente, no presente trabalho é
mostrado alguns dos progressos relativos & customizacao e integragao de ferramentas desenvolvidas em Python
focadas em experimentos de difracio de raios X (DRX) para monocristais e filmes finos. Serd comparado
a estratégia atual para substituir o software de controle da linha SPEC (SPEC, 1998) usando bibliotecas
em Python (como o zrayutilities, de (KRIEGNER; WINTERSBERGER; STANGL, 2013)), particularmente
para o caso do Difratometro Huber (45+2D) disponivel na linha EMA. Com respeito ao tratamento de dados,
algumas das solugoes ao lidar com intensidades nao igualmente espacadas durante o desenvolvimento de um
mapeamento de espaco reciproco tridimensional (3D-RSM) também sdo mostrados. Além disso, scripts de
usuérios (ou “macros”) podem também ser compativeis com esse ambiente ao usar a uma linguagem tao
popular no meio cientifico quanto o Python, no momento isso permitird o desenvolvimento constante de

software pelo pessoal do Laboratério Nacional de Luz Sincrotron (LNLS).

Palavras-chaves: Difracido de raios X. Python. Controle e tratamento de dados. Difratometro. 3D-RSM.



Abstract

Data treatment and setup movement control are essential aspects that can improve the success
rate of an X-ray diffraction experiment significantly. A robust and seamless processing of the detected
signals into physically-meaningful results leads to a fast understanding of the object of study, as well as a
decision-making support. Similarly, a friendly and intuitive control-interface for experiments that rely on
both samples and detectors movement can significantly impact the overall experience while optimizing the
usage of allocated beamtime. Reciprocal Space Maps, from (PIETSCH; HOLY; BAUMBACH, 2006) is an
example that could take advantage of such an approach when using the available area detectors at the EMA
beamline at Sirius. In a few words, it requires the transformation of the data from the laboratory-space
(angles) into the reciprocal space coordinates (Q vector). On top of that, the experiment controlling tool
would also be able to move and probe distinct directions of the reciprocal space depending on the sample
features. All of this process has the potential to be performed “under the hood”, making it easier for users
to control the experiment and have their results already during the beamtime. With this in mind, here is
presented some of the progress regarding the customization and integration of python-based tools focused
on single-crystals and epitaxial thin films X-ray diffraction experiments (XRD). Here, it will be discussed
the current strategy to replace the beamline controlling software SPEC (SPEC, 1998) into Python libraries
(such as xrayutilities, from (KRIEGNER; WINTERSBERGER; STANGL, 2013)), particularly for the case
of the (45+2D) Huber diffractometer available at EMA. On the data treatment side, some of the solutions
in dealing with non-regularly spaced data during the development of a three-dimensional reciprocal space
maps (3D-RSM) results are also shown. Furthermore, users scripts (or “macros”) may also be compatible
with this environment by using a popular scientific programming language as Python, at the same time it

allows constant software development by the Brazilian Synchrotron Light Laboratory (LNLS) staff.
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1 Introducao

A maneira de como era feito o estudo da matéria sofreu uma grande revolugao por volta de 100 anos
atras, apos a divulgacao dos primeiros resultados de difragio de raios X (XRD)!. Os experimentos de Max
von Laue, William Henry Bragg, e William Lawrence Bragg deram as primeiras contribuicoes para a sélida
base da cristalografia, tida hoje como uma area de conhecimento abrangente que retine especialidades como
fisica, quimica, matemaética, biologia, medicina, geologia (AZAROFF, 1968); (GIACOVAZZO et al., 1992).
A razao para isso estd intimamente relacionada a vasta ocorréncia de materiais cristalinos e sua definicao
descrita pela Unido Internacional de Cristalografia (IUCr): “por “cristal” definimos qualquer sélido que tem
um diagrama de difrac¢do essencialmente discreto” (IUCR, 1992).

Novas abordagens e técnicas de caracterizagao que utilizam raios X sao constantemente desenvolvidas,
o que faz com que atualmente ja seja possivel determinar de forma relativamente rapida o arranjo estrutural
de, por exemplo, proteinas formadas por milhares de d&tomos. Uma caracterizagio eficiente da solido suporte
tanto para o avanco do conhecimento cientifico vigente quanto para a sintese de novos materiais, sendo estes
de interesse biolégico (WILKINS; STOKES; WILSON, 1953), quimico (GATTI; MACCHI, 2012), e fisico
(ASHCROFT; MERMIN, 2011). Atualmente, técnicas de difracdo de raios X de alta resolu¢ao (HRXRD)?
estdo bem estabelecidas e se mostram como ferramenta avancada para estudos de pequenas modificacoes em
redes cristalinas, sendo entao essencial para o avanco de dispositivos baseados em filmes finos.

Nas dltimas décadas, o desenvolvimento dos filmes finos tem se tornado um ramo muito relevante da
ciéncia de materiais e tecnologia. No tltimo século surgiram varias aplicacoes nas areas da 6ptica, armaze-
namento de dados, sensores, microeletronica, protecao, entre outros. Todas essas aplicagoes tiveram grande
impacto no desenvolvimento de filmes finos e técnicas de deposicao relacionadas. Cada filme fino pode ser
feito de um determinado material, dependendo do tipo de aplicagdo que se pretenda, podendo serem feitos
de metais, compostos inorganicos, compostos organicos ou de moléculas biolégicas (BIRKHOLZ, 2004).

Com o desenvolvimento da industria de semicondutores e também o aumento do interesse em pesquisa
de filmes finos de materiais magnéticos, orginicos dentre outros, experimentos de difragao de raios X de
alta resolug@o se tornaram mais relevantes. A tarefa de desenvolver um filme fino se resume a estabelecer
que o processo de deposicao seja otimizado, de forma que o arranjamento dos atomos possibilite que o
filme satisfaca sua funcionalidade pretendida. Na optoeletronica, por exemplo, é necessario uma epitaxia
subsequente de filmes finos de diferentes materiais semicondutores. Dessa forma, cada camada deve ter uma
espessura de apenas algumas camadas atomicas para poder explorar efeitos quinticos. As finas camadas
sdo incorporadas em revestimentos muito mais espessos ou multicamadas que possuem composicao quimica
um pouco diferente umas das outras com a finalidade de confinamento eletronico e 6ptico. A maneira como
essas interfaces interagem é extremamente relevante para a funcdo que os dispositivos terao, e a HRXRD
tem muito a contribuir para esse tipo de problema (PIETSCH; HOLY; BAUMBACH, 2006); (BIRKHOLZ,
2004).

Pelo fato de a estrutura estar intimamente ligada as propriedades de qualquer material, fazer a
caracterizacao estrutural das propriedades é extremamente relevante para o desenvolvimento de dispositivos.
Diferentemente de algumas técnicas de caracterizagdo que fornecem informagao diretas de determinada area
superficial, a XRD nos informa sobre o espaco reciproco da amostra que contém informagoes estruturais
médias sobre um grande volume. Além disso, essa técnica da acesso a interface interna do material de forma

nao destrutiva, podendo ser performada de forma bastante rapida quando feita em fontes de intenso brilho,

Do inglés X-ray Diffraction.
2Do inglés High Resolution X-Ray Diffraction.



como o caso do Sirius (PIETSCH; HOLY; BAUMBACH, 2006).

Atualmente, a utilizagdo de raios X para o estudo a respeito da ciéncia de materiais sdo corriqueiras
em laboratorios, e aplicacoes industriais para sondagem de processos crescem cada vez mais. O grande uso
de técnicas de XRD se deve ao desenvolvimento de novos equipamentos para essa técnica. Difratdémetros
modernos sdo equipados para oferecer ao usuério a possibilidade de realizar o experimento em diversas
condigoes experimentais. Portanto, essa instrumentagao pode ser utilizada para experimentos de HRXRD,
além de medidas de imperfeicoes nos materiais.

A linha EMA (Extreme condition x-ray Methods of Analysis) do Sirius é voltada para fazer analises
sob condigoes extremas de pressao, temperatura, e campo magnético. Em uma das estagoes experimentais
dessa linha existe um difratometro de seis circulos. Com um difratémetro desse tipo, temos que o elemento
de resolucdo é pequeno o suficiente para resolver artefatos proximos no espago reciproco. Possibilitando a
caracterizacao de heteroestruturas e sistemas de multicamadas através do mapeamento do espaco reciproco.
Ao invés de gerar graficos 1D de intensidade em funcao de 20, pode-se construir graficos bidimensionais
da intensidade em fungdo das componentes do vetor espalhamento Q (Q.,Q@.), permitindo a obten¢do do
desalinhamento de rede entre substrato e filme além do grau de relaxagdo. Além disso, 0 mapeamento do
espaco reciproco permite sondar a distribuigdo do espalhamento difuso nas proximidades de um pico de Bragg.
Todas essas possibilidades citadas anteriormente podem ser potencializadas ao se fazer o mapeamento 3D,
que leva em conta todas as componentes de Q, i.e., @z, @y € ), j& que mais uma dimensdo de informagao é
adicionada (PIETSCH; HOLY; BAUMBACH, 2006).

1.1 Motivacao

O presente trabalho é motivado em integrar o controle e tratamento de dados de um experimento de
XRD da linha de luz EMA do Sirius. Para que um experimento tenha sucesso, um niimero grande de variaveis
deve ser levado em consideracao, e sem divida o controle e automacao do experimento para a aquisicao dos
dados, bem como a anélise desses dados coletados, que é de extrema importancia. O processamento dos sinais
detectados levando a interpretacoes com significado fisico do objeto de estudo de forma rapida e precisa, pode
dar um grande suporte para a tomada de decisdo durante o experimento. Ademais, uma interface amigével e
intuitiva para o controle do experimento, além da possibilidade de fazer grande parte do tratamento de dados,
que no momento depende inteiramente da ezpertise do usuério, diretamente na linha usando a infraestrutura e

conhecimento do Sirius, podem impactar positivamente no tempo de utiliza¢ao da linha por futuros usuarios.

1.2 Objetivos

O presente trabalho se propos a desenvolver uma ferramenta em Python para o controle e automagao
do experimento de difracao de raios X, além de uma rotina também em Python para o mapeamento tridi-
mensional do espaco reciproco. Esses programas sio voltados para experimentos de difragdo em filmes finos
e monocristais. Ambos possuem a caracteristica de poderem ser realizados “por de baixo dos panos”’, melho-
rando a experiéncia e interacao dos usuarios com o experimento. Como Python tornou-se a nova linguagem
padrao do LNLS, essa abordagem permitira o continuo desenvolvimento e integracdo de novas ferramentas
pelos grupos de computac¢iao do LNLS.

Dessa forma, podemos listar os objetivos desse trabalho como sendo:



1) Desenvolver uma ferramenta de controle para o difratometro de 6 circulos baseada em
Python;

2) Aprimorar o tratamento de dados de experimentos que envolvam o mapeamento tridi-
mensional do espaco reciproco (3D-RSM) também usando a linguagem de programacao

Python, visando uma melhor integracao entre controle e tratamento de dados.
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2 Teoria

2.1 Convengoes iniciais

A luz é uma onda eletromagnética, que pode ser descrita em fun¢ao do campo magnético B, e do
campo elétrico E. Contudo, para os efeitos de interferéncia e difracdo em grande parte dos casos ndo é
necessério considerar seu cardter vetorial. Assim, considerando uma onda escalar E(x,t), facilita bastante o
seu tratamento (NUSSENZVEIG, 2014).
Para a descrigdo de ondas, sera adotada a notacao complexa, da forma (NUSSENZVEIG, 2014):
E(x,t) = Re[v(x)e”™"]. (2.1)

Para uma onda plana v(x) = Age™" - e7¥*_ 3 equacdo (2.1) se torna:

E(x,t) = Agcos(k - x — wt + ¢) (2.2)
tal que Ag é a amplitude da onda, ¥(x,t) =k -x —wt + J é a fase da onda, k = ki é o vetor de onda, @ é o
versor da dire¢do da propagacdo, w é a frequéncia angular, e ¢ é a constante de fase.
Para uma frente de onda esférica, proveniente de uma fonte puntiforme, descrita por:
—is ¢
v(x) = Age™ 0 ——, (2.3)

a equagao (2.1) fica:

E(x,t) = Ao cos(kr — wt + 9), (2.4)
r

no qual r = |x|.

As frentes de onda, i.e., superficies na qual a fase é contante, para ondas planas, sdo planos perpen-
diculares a direcao do vetor de onda k. Para ondas esféricas, as frentes de ondas sao esferas, e a amplitude
decresce com o inverso de r (NUSSENZVEIG, 2014).

2.2 Intensidade

A intensidade corresponde a energia média por unidade de tempo e de drea que atravessa um elemento
de area perpendicular a direcdo de propagagao (NUSSENZVEIG, 2014). Considerando uma onda monocro-
matica, o valor da intensidade varia com o tempo para uma certa posi¢io x, de acordo com cos?(wt + «), tal
que « é uma constante. Para a luz visivel, w é muito grande, de forma que a oscilagdo é tao veloz que um
detector s6 ira captar o valor médio (NUSSENZVEIG, 2014)

1
<cos*(wt+a)> = <sin*(wt+a)> = 3 (2.5)

Portanto o valor médio da intensidade é proporcional a:

I(x) = |v(z)], (2.6)

sendo constante para ondas planas, enquanto para ondas esféricas cai com o inverso do quadrado da distancia.
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2.2.1 Intensidade para interferéncia de duas ondas

Para sabermos a intensidade em um ponto P devido a soma da contribuicdo de duas ondas mono-
cromaticas P, e Py, podemos escrever a equagdo (2.1) como (NUSSENZVEIG, 2014):

E(x,t) = Re[vi(x)e™“" + vy(x)e ™. (2.7)

Dessa forma, a intensidade no ponto P é dada por:

I(x) = |v1(x) + va(x)]*. (2.8)

Devemos notar que o termo |e~**| tem valor unitario, assim, o fator temporal nao afetara o resultado final.
Por isso, no tratamento de ondas monocrométicas o fator temporal |e ~*!| ser4 omitido. Iremos trabalhar de
forma direta com a funcdo de onda resultante v(x), e o resultado completo ficard implicito, sendo dado pela
equagao (2.1).

Podemos indicar o médulo e a fase de um nimero complexo separadamente, reescrevendo a equagao

(2.8) dessa forma, temos:

1(x) = [Joa]e’® + Jva|e™2 2, (2.9)

resultando em:

I(%) = (Jor|e ™1 + [vale™2) ([or €91 + [vs]ei®?)
I(x) = |v1]? + |va|? + vy ||va|[e?(#2 1) 4 emi(92=91)]

I(x) = [0*] = [01]* + |v2]? + 2|v1v2| cos(d2 — ¢1). (2.10)

Visto que |v1]|? corresponde a intensidade I, relativa a onda vy, de forma anéloga, |v2|? ¢ a intensidade
relativa a onda vy, podemos reescrever o resultado da equagao (2.10) como (NUSSENZVEIG, 2014):

Izll —f—]2+2\/ 11]2 COS(A), (211)

tal que A = ¢ — ¢ € a diferenga entre as fases das duas ondas. Chamamos o ultimo termo da equacgéo (2.11)

de termo de interferéncia e, dessa forma, a (2.11) consiste na lei basica para a interferéncia de duas ondas.
Analisando o termo cos(A) da (2.11), teremos interferéncia construtiva quando cos(A) = 1, que

ocorre para A = 2nw (n € Z), e a condi¢do para interferéncia destrutiva é A = (2n + 1), que resulta em

cos(A) = —1. Para esse casos a (2.11) se torna:

A =2nm = I = (\/I) + V/I1)* (contrutiva)
A=@2n+ )1 =1= (VI — V/I)? (destrutiva)

Para o caso particular em que as ondas incidentes no ponto P possuem a mesma intensidade, a equacgao
(2.12) se torna:

(2.12)
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I =4I, (construtiva)
L=1I= . (2.13)
I= (destrutiva)

2.3 Difracao

A figura (2.1) mostra um anteparo opaco com um pequeno furo que é incidido perpendicularmente
por um feixe luminoso paralelo e monocromético. A partir da lei da propagacao retilinea da dptica geométrica,
espera-se que uma imagem brilhante igual ao orificio se forme no segundo anteparo; enquanto o restante do

anteparo seria tomado pela escuriddo. Entretanto, ndo é o que se observa (NUSSENZVEIG, 2014).

Figura 2.1: Difragdo por um pequeno furo visto em um anteparo a uma distancia R.

R

Fonte: Adaptado de (NUSSENZVEIG, 2014).

Se o orificio tem tamanho proximo ao comprimento de onda da onda incidente, e a distancia R ao
anteparo de observagoes é grande o suficiente, o feixe ird penetrar na regiao de sombra geométrica gerando
franjas brilhantes e escuras proximas ao limite da sombra. Francesco Maria Grimaldi observou esse efeito
em seu livro publicado em 1665, e o termo difra¢io foi cunhado por ele para descrever esses desvios da
propagacao retilinea de luz (NUSSENZVEIG, 2014). Considerando distancias ndo excessivamente grandes,
observaremos no anteparo algo semelhante com o objeto que estd espalhando, apesar de estar imerso entre
franjas claras e escuras. Esse tipo de difragdo recebe o nome de difra¢ao de Fresnel.

O fenoémeno de difragio esta intimamente relacionado ao de interferéncia, e ambos sdo caracteristicos
de uma teoria ondulatéria da luz. E corriqueiro que os fenémenos de difracio sejam categorizados com relacio
a distancia entre o objeto espalhador (difratante) com relagdo ao anteparo de observacdo (NUSSENZVEIG,
2014).

Para o caso em que as distancias sdo consideravelmente grandes, formalmente R — oo, o resultado
ird depender apenas da direcao de observagao, e nao se assemelhard com a forma do objeto difratante. Nesse
trabalho estamos interessados nesse tipo de difracao, que recebe o nome de difracio de Fraunhofer

2.3.1 Difracao de Fraunhofer

Para a descricdo matematica do fenémeno de difragao, sera utilizado o Principio de Huygens-Fresnel-
Kirchhoff, mostrado na equagao (2.14) (NUSSENZVEIG, 2014):

eik'r
do. 2.14
o (2.14)

v(P) = %/ACOSO/’UQ(P/)

O principio de Huygens-Fresnel-Kirchhoff diz que a onda resultante em um ponto P, vide figura (2.2),
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é igual a contribuic¢do de todos os pontos P’ sobre A, pelos quais ondas esféricas de amplitude vo(P’)do sdo
emanadas. Em que A é a abertura do anteparo S atingido pela onda incidente, cos 6’ é o fator de obliquidade
proposto por Fresnel, de forma que 6’ ¢ o angulo que vetor de onda em P’ faz com o vetor PP/, e A é o

comprimento de onda.

Figura 2.2: Difracao pela abertura do anteparo S observada em um ponto distante P.

Fonte: Adaptado de (NUSSENZVEIG, 2014).

Uma distancia suficientemente grande pode ser definida como a distancia em que nao se observa mais
efeitos de difra¢do de Fresnel. Para que isso ocorra, a seguinte condigao deve ser satisfeita (NUSSENZVEIG,
2014):

f—;<<1;R>>DTZ;R>>D:g>>§>>1, (2.15)
em que D representa o didmetro da abertura A, e A é o comprimento de onda.

Seja 1ig 0 versor que representada a direcao da propagacao de uma onda plana que incide no anteparo
S, P’ um ponto sobre a abertura A, e denotemos OP’ por x’. Dessa forma, obtemos na (2.14):

vo(P') = age™ ™, (2.16)

tal que ag é a amplitude incidente, e kg = kup.

Assumindo que a condi¢do para distancia suficientemente grande seja satisfeita, podemos supor que
as ondas que chegam ao ponto de observagdo P sejam paralelas. Além disso, pelo fato de que a parte
majoritaria da intensidade ir&4 para direcoes proximas a tig, a variagao do fator de obliquidade pode ser
desprezada sobre A, e assim, podemos substituir cos®’ por cosfy. Em que 6 consiste no angulo entre a

dire¢ao da onda incidente (lip) e a normal do plano A. Podemos reescrever a equacao (2.14), da forma:
eikR
R )

v(p) = ao f(k, 1, o) (2.17)
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no qual f(k,, o), &

0 e N

F(k, 1, 1p) = 00870/ ¢ih(Bo—)x 2,1 (2.18)
Z)\ A

Pode-se concluir que a (2.17) representa uma onda esférica originada da abertura A, que tem como

. ~ . . N . ikR ~ PR 2
tnica dependéncia da distancia o fator “5— de propagacao de onda esférica. Isso estd de acordo com o

esperado, pois visto de um ponto muito distante, a abertura devera se assemelhar a uma fonte puntiforme.

Contudo, temos que a amplitude da onda esférica, que também é proporcional a amplitude ag da onda
incidente, depende da diregdo com que a onda incide no anteparo (ip) e também da dire¢ido de observagao
(@) através do fator f(k,,0p), que expressa a amplitude de difragdo na direcdo da observagao. Temos
também que a integral da equagdo (2.18) representa o fator de interferéncia, ja que ela leva em consideragao
as diferencas de fase dos pontos P’ sobre A.

A maxima intensidade é obtida quando as direcoes de iy estd na direcdo de @, de forma que a
interferéncia é construtiva, ja que ela se d& na direcao de propagacao geométrica, dada por:

cos by cos Oy

f(k, 0, 60) = — AdQ:c’z oA (2.19)

em que o4 corresponde a area da abertura A. Usualmente, convém expressar a amplitude de forma relativa
a amplitude maxima, da seguinte forma (NUSSENZVEIG, 2014):

f(ka ﬁ) 1 / ik(tio—10)-x" 32, ./
- 0 2.2
Fhto) ~ oa Ae d°z’, (2.20)

no qual o a notagao foi simplificada. A partir do médulo quadrado das amplitudes, podemos também escrever

a razao entre as intensidades, que fica:

I() 1 2

I(ig) ~ (0a)?

(2.21)

2.3.2 Rede de difracao unidimensional

Uma rede de difragao unidimensional consiste em um arranjo de elementos difratantes periédicos em
uma direcdo, por exemplo, um anteparo com fendas de mesmo tamanho, dispostas em uma linha com espa-
camentos equidistantes entre os centros de cada fenda da rede. Comecemos por desenvolver uma expressao
para um anteparo com duas fendas, como na figura (2.3), e em seguida estenderemos para uma rede com N
fendas (NUSSENZVEIG, 2014).

2.3.3 Par de fendas

A figura (2.3) possui um par de fendas de largura 2a dispostas ao longo do eixo z. O ponto O é a
origem do sistema e esté situada no centro de uma das fendas, O’ esta no centro da outra fenda, e a distancia
entre os centro das fendas O e O’ é d. Consideremos que a iluminacao devido a uma fonte linear incoerente
atinja as fendas com a incidéncia normal, podemos reescrever a equacao (2.20), como (NUSSENZVEIG,
2014):

f(k, ) :0/ e~ kRaX g2 (2.22)
A

tal que C é a constante de normalizacao.
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Figura 2.3: Difracao por duas fendas.

Fonte: Adaptado de (NUSSENZVEIG, 2014).

Denotando os cossenos diretores da diregdo de observagao, 1, por («, 8,7), e portanto, it = (¢, 8,7).
Um ponto sobre a fenda, figura (2.3), é representado por x’ = (z/,0,0). Substituindo em (2.22), temos:

a ) , d+a ) ,
/ e thaw gyt +/ e~k gt | (2.23)
—a d—a

Fazendo uma troca de variavel 2’ = d + = na segunda integral da (2.23), resulta em:

f(k,a) _ C/ e—ikax/dzx/ —C
A

d+a ) , ) a )
/ e—zkam d.’EI _ e—zkad/ e—zkawdx’ (224)
d

—a —a

a equagao (2.23) se torna (NUSSENZVEIG, 2014):

flk,a)=C Uja e—ihoa! gut | o—ikad ffa efika:zdx}

f(k,a) = fi(k,a) [L+ e *d] (2.25)

na qual fi(k, «) representa a amplitude relativa a uma s6 fenda. O caso geral, em que a onda incidente sobre
as fendas possui uma diregao qualquer tig = (v, Bo,70), € obtido substituindo « por a — ay.
Analisando a equagdo (2.25), vemos que a contribuigdo da segunda fenda ¢é idéntica a primeira a

nao ser pelo fator de fase e~*Fod

, que ocorre devido a diferenca de caminho entre as ondas difratadas pela
primeira e a segunda fenda.

Para avaliar a intensidade decorrente das ondas difratadas pelas duas fendas é utilizada a equagao
(2.11), que, pelo fato de a onda incidente em cada fenda ser a mesma, possuem a mesma intensidade. Notando
que o = sinf, no qual 6 é o angulo entre a normal do anteparo de observagoes e a dire¢ao de observagao,

podemos reescrever a eq. (2.11) como:

I(a) = 2L (a)(1 + cos A) = I (a) - 4 cos® (2) , (2.26)

em que
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A = kda = kdsin 6 (2.27)
representa a defasagem entre os pontos originados por cada fenda e I1(«) é a intensidade relativa a apenas
uma fenda.

A intensidade dada pela equagéo (2.26) é uma fungao periodica com o periodo de 27, devido ao termo

cos? (§), em que as interferéncias construtivas ocorrem quando:

Ap, =2mm <= ad=dsind =mA (m=0,%£1,+2,...). (2.28)

O termo I;(«) é uma funcdo proporcional a Si‘)‘;x , com o pico central delimitado pelos pontos:

X =kaa ==+1 = aazasin@zi%. (2.29)

Ao analisar a equacdo (2.26), vemos que I;(«) corresponde ao fator relativo a difragdo, e o fator

4 cos? (%) descreve a interferéncia entre as ondas. Supondo d algumas vezes maior do que 2a, temos que o

fator de difracdo varia lentamente com sin 6, quando comparado ao fator de interferéncia, dessa forma ele ira

modular o fator de interferéncia. O grafico da figura (2.4) ilustra esse efeito, nela, vemos também os méaximos

principais de interferéncia, obtidos pela equagdo (2.28), que variam de forma lenta devido a multiplicagao
pelo fator de difragao.

Figura 2.4: Grafico mostrando a modulacao no fator de interferéncia devido ao fator de difracao para a
difracao por duas fendas.

Na)
4’1(‘1)

sin?x
XZ

o AN e

sin@

Fonte: O autor.

2.3.4 Difragao por N fendas

Podemos generalizar o resultado obtido previamente para duas fendas para N fendas. Comecemos
por considerar uma rede de de difra¢do com N fendas de mesma largura 2a, dispostas de maneira regularmente

espacgadas, com d sendo a distancia entre seus centros. Extrapolando a equagdo (2.25) para N fendas, vemos
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que a defasem da fenda de ordem p + 1 com relacio a primeira fenda é e~**(?d) ¢ obtemos a seguinte
expressao (NUSSENZVEIG, 2014):

f(k,a) _ fl(k,a) |:1 + e—ikad + e—2ikad N e—(N—l)ikad ) (230)

A soma da equagdo (2.30) pode ser escrita como:

N-1 N-1 ’
Z p—inkad _ Z p(—ikad)” (2.31)
n=0 n=0

Notemos que a soma da equacdo (2.31) representa a soma de uma progressido geométrica, que possui razao

e~**ad ¢ N termos, podendo ser calculada pela soma de N termos de uma progressio geométrica:

1— e—iNk:ad 1— e—iNA

. = - 2.32
1 — e—tkad 1— 671A ’ ( )

em que A é a diferenca entre as fases de duas fendas consecutivas, dada pela equagdo (2.27). Podemos agora
formular uma expressao para a intensidade gerada a partir da difragao das N fendas, da forma:

I(a) = Il(a) .

1 _ e—iNA
‘ ¢ (2.33)

1 —eiA

desenvolvendo:

e =(1—e)(1—e?)=1— (" +e2)+1
A) . (2.34)

=2 —2cos(A) = 2(1 — cos(A)) = sin? (2

Por fim, a equacao (2.33), se torna (NUSSENZVEIG, 2014):

sin® (242)
i (3)

Ia) = L(a)- (2.35)

Comparando com a equacao (2.26), que descreve a intensidade para a difracdo de duas fendas,
notamos que ela se mantém como uma funcao periédica de A com periodo de 27. Portanto, podemos estudar
a funcado apenas dentro de um periodo, e tomando um intervalo simétrico a origem como —m < A < 7,
podemos levar em consideracdo apenas A > 0, ja que se trata de uma fungdo par.

Quando A = 0 a equagao (2.30) assume o valor de fi(k,«) - N, ou seja, a amplitude resultante é
igual a NV vezes a de uma unica fenda, que ocorre devido a interferéncia construtiva das NV fendas. Nesse
mesmo caso, a intensidade resultante é amplificada pela fator N2. Porém, quando A = 5 0 numerador e
denominador da equacdo (2.35) tem seus valores proximos a 1, assim, o valor da fungao é aproximadamente
N? vezes menor do que no caso anterior (NUSSENZVEIG, 2014).

Quando N é grande, que é nosso caso de interesse, podemos considerar apenas o intervalo em que

|A] << 1, que nos permite fazer a seguinte aproximagao:

2 (NA 2 (NA
= 2( 2 ) < 2. SmN(A 22) (2.36)
i (3) (53)

sin2X

Portanto, nesse intervalo, voltamos a funcao R multiplicada pelo fator N2. Os maximos principais se

dao, quando:
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Ap=mn < a= % (m=0,£1,£2,...), (2.37)

e a largura maxima dos picos principais sao dadas por:
NA A T

+ — =4 2.
) = N (2.38)

sendo da ordem de ﬁ, portanto N vezes menor que a espacamento dos méximos principais. Decorrendo
que quanto maior N, mais estreitos e definidos os picos se tornam. Isso pode ser visto no grafico da figura

(2.5), no qual é feito a comparacao entre um grafico gerado com 10 fendas difratantes e com 100 fendas.

A intensidade 111 ((O; )) referente a equagao (2.35), analogamente como na intensidade da equagdo (2.32), é
modulado por N2 - S”)‘(# O grafico da figura (2.6) ilustra essa modulagéo.

Figura 2.5: Grafico mostrando a relagao entre o niimero de fendas e os picos obtidos.

N=10

A

=

A

_. sin?(%2)
‘/ sin?(%)

100 sing

M

=

sin6

Fonte: O autor.
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Figura 2.6: Grafico evidenciando a modulagao causada no fator de interferéncia para N fendas.

A N2
I(a)
h(a)
in2x
NZ . SI)I:2

Fonte: O autor.
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2.4 Difragao de raios X

A rede de difragao descrita na sec¢do (2.3.4) é unidimensional, isto ¢, a periodicidade dos elementos
da rede se repete ao longo de uma tnica direcdo. No caso de uma rede bidimensional, ela é definida como
uma estrutura periddica em duas direcoes diferentes, sendo duas redes unidimensionais cruzadas como uma
cortina de gaze um exemplo tipico. A natureza nos fornece estruturas com periodicidade tridimensional: os
cristais. Entretanto, como o espacamento dos elementos da rede de um cristal sdo da ordem de Angstrons
(10~%m), torna-se necessario utilizar radiacio eletromagnética com comprimento de onda dessa magnitude
para observar o fenémeno de difracdo. A radiagdo com comprimento de onda dessa ordem é conhecida como
sendo os raios X (NUSSENZVEIG, 2014).

2.4.1 Cristalografia

Podemos encontrar cristais em qualquer lugar na natureza. Em formagoes rochosas eles sao parti-
cularmente abundantes como minerais, porém, podem ser encontrados em flocos de neve. As faces planas
dos minérios, além dos padroes hexagonais dos flocos de neve, foram evidéncias para acreditar que havia um
ordenamento interno de padroes ou arranjos como os de “blocos de construgdo”. Contudo, a forma e escala
desses blocos, bem como sua natureza eram desconhecidos (SCHNEEGANS, 2014).

Johannes Kepler foi o primeiro a tentar relacionar o formato macroscopio de um cristal com sua
estrutura interna. Em 1611 ele escreveu possivelmente o primeiro tratado em cristalografia geométrica com o

titulo de “Um Presente de Ano Novo ou o Floco de Neve de Seis Lados®”

. Nesse trabalho, ele especula o porque
de os flocos de neve sempre possuirem seis lados, nunca mais ou menos. Kepler sugere que os flocos de neve
sao constituidos de pequenas esferas, mostrando em seguida como o empacotamento dessas esferas gerariam
uma figura de seis lados. Entretanto ele ndo foi capaz de resolver o problema do porqué as seis pontas se
ramificam gerando varios padroes, e também nao estendeu suas ideias para outros materiais(tHAMMOND,
2009).

Foram com os trabalhos independentes de Ludwig Seeber em 1824, e de Gabriel Delafosse em 1840,
que surgi o conceito de rede espacial, na qual um cristal & melhor representado por um arranjo de pon-
tos discretos originados por operacgdes translacionais. Em 1850 foi August Bravais que mostrou todas as
possiveis 14 simetrias de rede, sendo conhecidas como as famosas redes de Bravais. Posteriormente, em
1891, com todas as operagoes de simetrias catalogadas por Arthur Shoenflies e Evgraf Fedorov, foi mostrado
que com essas operacoes de simetria sobre as 14 possiveis redes de Bravais existiam 230 possiveis grupos
espaciaistHAMMOND, 2009)(NATURE, 2014).

Por um bom tempo nao houve maneiras para validar essas noc¢oes de grupos espaciais e redes espaciais.
Foi somente com Max von Laue e os Braggs, através de experimentos de difracdo de raios X, que foi possivel
entdo verificd-los. A descoberta no comecgo do século 20 de que os raios X poderiam ser utilizados para “ver”
a estrutura da matéria de forma néo destrutiva marca o nascimento da cristalografia moderna(HAMMOND,
2009).

2.4.1.1 Rede

E conveniente descrever um cristal a partir de sua periodicidade translacional levando em consideragao
a geometria da repeticao. Para o caso em que o padrao possui periodicidade a,b e ¢ ao longo de trés direcoes

nao coplanares, pode-se descrever totalmente a geometria da repeticao por uma sequéncia periédica de pontos,

3Traducdo livre de: A New Year’s Gift or the Six-Cornered Snowflake.
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separadas por intervalos a, b, ¢ ao longo dessas trés dire¢oes. A essa colecdo de pontos se da o nome de rede.
Uma rede bidimensional pode ser vista na figura (2.7 a) (GTACOVAZZO et al., 1992).

Figura 2.7: Redes bidimensionais. (a) Rede bidimensional. (b) Rede bidimensional ilustrando o fato de que

os vetores da base podem ser tomados arbitrariamente. (c) uma célula unitéria primitiva que nao reflete a

simetria retangular da rede. (d) O ponto P é descrito por multiplos néo inteiros dos vetores da af’ e af’.

a) e ® ® ® b) ® c o ®

o ® ® e ) ®

9 ) 4 a 2 @ @

® ® o ®

Q'
!

C) o @ L] ® d) (o] o [+ o]
® ® ] ® o
o ® ©
.................. .

Fonte: adaptado de (ALS-NIELSEN, 2011).

Tomando um ponto arbitrario da rede 2D como origem, pode-se descrever unicamente a posicao de

qualquer outro ponto da rede de forma:

Rn =nia; + noag, (239)

em que np e ng sao inteiros. Os vetores a; e ap definem um paralelogramo ao qual se da o nome de célula
unitaria, sendo chamados de vetores de base da célula unitaria. A escolha desses 2 vetores é arbitraria, como
pode ser visto na figura (2.7 b), em que a area definida é o dobro de a). Para o caso da figura (2.7 d)
apesar de os pontos da rede ainda satisfazerem a condigao da equagao (2.39), os valores de n; e ns néo serao
inteiros. Por exemplo, o ponto P é relacionado com os vetores de base e com a origem da seguinte forma
(n1,m2) = (3, 3) (GIACOVAZZO et al., 1992).

Pode-se caracterizar a célula unitaria a partir do nimero de pontos da rede que pertencem a ela.
Os pontos que estdo nos lados e no vértice sdo partilhadas entre seus vizinhos, de forma que para uma rede
2D temos que um ponto do vértice é partilhado por 4 células, e um ponto em um dos lados por 2. Células
unitérias que contenham apenas um ponto da rede em seu interior recebem o nome de primitivas. Quando
uma célula nao é primitiva temos que os niimeros escalares que multiplicam os vetores da base serao racionais.
Uma maneira facil de ver quantos pontos da rede sdo contidos por uma célula unitaria é transladar um pouco
a rede, como mostrado pelas linhas pontilhadas na figura (2.7) (GIACOVAZZO et al., 1992).

Trabalhar com células primitivas pode parecer desejavel, ja que ela parece oferecer a melhor possibili-

dade para minimizar possiveis ambiguidades. Mas o que ocorre na pratica é que em varias situagoes trabalhar
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com célula ndo primitivas é mais conveniente, pois em geral a visualizacdo da estrutura se torna mais facil.
A célula unitéria mais comum para uma determinada estrutura é chamada de célula unitéria convencional.
Por exemplo, na figura (2.7 ¢) vemos que de fato se trata de uma célula unitaria primitiva, porém ela nao
reflete a simetria retangular apresentada pela rede (ALS-NIELSEN, 2011).

As consideragoes feitas anteriormente podem ser estendidas para uma rede tridimensional, em que a

rede é definida por um conjunto de vetores da seguinte maneira (ALS-NIELSEN, 2011):

Rn = nia; + ngaz + n3as. (240)

Além da simetria de translagdo, uma rede possui simetria de rotagdo e reflexdo, ou ainda simetrias
compostas de translagdo com rotagio/reflexdo. Redes que tem a propriedade de que cada um de seus pontos
sdo idénticos, sdo associadas a Auguste Bravais. Bravais mostrou que existem 5 tipos de redes bidimensionais
consistentes com a equacao (2.39), e que para redes tridimensionais existem 14, analogamente consistentes
com a equagao (2.40) (ALS-NIELSEN, 2011).

Podemos definir a rede matematicamente a partir de fungoes delta. Por exemplo, uma rede unidi-
mensional com periodo a pode ser representada por (GIACOVAZZO et al., 1992):

+oo
L(z) = Z 0(x — zp), (2.41)
n=—oo
em que 6(x —x,) € a funcdo delta de Dirac, no qual z,, = na com n um inteiro. Dessa forma L(x) é 0 exceto
em z = na. De forma andloga, uma rede tridimensional definida pelos vetores unitéarios a;, as,as pode ser

descrita por:

—+o0

Li)= > 0 =Tnmmmy), (2.42)

n1,n2,N3==—00

tal que Iy, n, ng = N1a1+ngas+nsas, € ny,ng, ng sdo valores inteiros. A partir dos trés vetores de base defini-
se um paralelepipedo também nomeado de célula unitéaria, mostrado na figura (2.8). As direcoes definidas
por aj, as, e ag sdo os eixos cristalograficos X, Y, Z, respectivamente. Os angulos entre os vetores sdo «, 3,
e 7, em que « é oposto a a;, B & oposto a as, e v € oposto a az, como visto na figura (2.8). Pode-se calcular
o volume da célula unitéria a partir do produto misto entre os vetores da base, da forma:

V=a - a x ag (2.43)

De foma anéloga ao caso 2D, se a célula escolhida também for primitiva tem-se que os escalares nq,
ng, € ng sao restringidos a serem inteiros para todos os pontos da rede. Para caracterizar a rede deve-se
tomar os pontos do vértice com apenas é pertencendo a célula, na borda correspondendo a % e em uma face
a % As redes que existem no espaco real ocupados pelo cristal sdo chamadas de rede direta para diferenciar

de redes definidas em outros espagos.

2.4.1.2 Base

Para descrever completamente a estrutura de um cristal é necessario associar uma “base”, i.e., um
conjunto de d4tomos ou moléculas com cada ponto da rede. A constru¢do mateméatica de um cristal é feita
a partir da convolugio entre a base de dtomos e a rede. Representando o cristal pela fun¢do C(r), L(r)

definida na equacao (2.42) descreve a rede, e B(r) descreve a base. Pelo teorema da convolugio temos que
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Figura 2.8: Célula unitéria tridimensional mostrando os vetores da base juntamente com os angulos entre
eles.

by

Fonte: (WILLMOT, 2011).

(ALS-NIELSEN, 2011):

o] 00 + o0
L(r) ® B(r) = / L(r1)B(r — ry)dry = / > 8(r1 = Tnynmy) B(r —11)dry

- ~— ni,na,nz3=—00
+o00o [e's) +oo
LE)®Br)= Y / 0(r1 = Tnymomy)B(r —r1)dra = > B(r—Tn, mym,)-
ni,ng,ng=—oo "’ ~ X ni,n2,m3=—00
+oo
Cr)=L(r)®Bx)= >  B(r—rn,nym,) (2.44)
ni,n2,N3=—00

Uma imagem que ilustra o processo de convolucao entre a base e a rede para descrever um cristal é
mostrado na figura (2.9). Ao combinar as possiveis simetrias da base com as da rede obtém-se um total de

230 possibilidades para a estrutura do cristal, que recebem o nome de grupos espaciais.

Figura 2.9: Convolugao entre a base de dtomos e a rede formando um cristal.

ot o elele e
e T T Tt o eolelele
o eelele e

Fonte: (WILLMOT, 2011).

2.4.1.3 Planos cristalograficos

Quando um experimento de difracdo de raios X é realizado para uma amostra cristalina, estamos

interessados no espalhamento dos atomos que podem ser entendidos como familias de planos. Portanto ter
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uma maneira para especificar as familias de planos dentro de um cristal é de suma importancia. A maneira
mais conveniente de realizar essa tarefa é através dos indices de Miller. Os indices de Miller para uma familia
de planos descrita por (h,k,l) sdo definidos de forma que o plano mais proximo a origem tem intersecgoes
(a1 a2 a

GL, %, %) com os eixos (a1, az,az). A figura (2.10) mostra a defini¢do de alguns planos (ALS-NIELSEN,
2011).

Figura 2.10: Planos cristalograficos definidos através dos indices de Miller.

LA

sl
&
& 1

(200)

Fonte: (WILLMOT, 2011).

Para uma dada familia de planos, os planos sdo igualmente espacados, o que possibilita definir o

espagamento dpy; para cada uma das familias, que pode ser calculado da seguinte forma (WILLMOT, 2011):

/1 —cos2 a — cos? B — cos? y + 2 cos v cos 3 cos 7y

dhi = . : = ; (2.45)
\/(:1> sin? a + (%) sin? 8 + <al—3) sin?y —c¢; — ez —c3
em que
2kl 2lh 2hk
= (cosa — cos Bcosy) ; ca = (cos B —cosycosa) ; c3 = (cos~y — cos acos B3). (2.46)
a2a3 ai1as ai1as

A equagado (2.45) se torna bastante trivial para redes com alta simetria, como ortorrémbicas, tetra-
gonais, e cubicas, nas quais o = § = v = 90°. Via de regra, as distancias interplanares diminuem conforme o
indice de Miller aumenta, o contrario ocorre com a densidade de pontos no plano que decresce, de forma que
o numero de pontos por unidade de drea fica reduzido. A figura (2.11) mostra esquematicamente a distancia
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interplanar para um cristal bidimensional.

Figura 2.11: Familias de planos em uma rede bidimensional evidenciando a distancia dpy;.

Fonte: (WILLMOT, 2011).

2.4.1.4 Rede reciproca

A rede reciproca introduzida por P. Ewald em 1921 é muito tutil para descrever a geometria de
difracao. A partir dos vetores da base aj, as, e a3 referentes a rede direta, podemos definir uma segunda rede
reciproca a essa. Os vetores da rede reciproca aj, a3, e a3 sdo definidos de maneira a satisfazer a seguinte
condigdo (GIACOVAZZO et al., 1992) (ALS-NIELSEN, 2011):

a; a; = 271'(52']‘7 (247)

em que d;; é o delta de Kronecker, definido de forma que 6;; =1 caso i = j e 0 se i # j. A equacdo (2.47)
sugere que o vetor aj é normal ao plano definido por (az, as), a3 ao plano (aj, as), e a§ ao plano (a;, az). O
modulo e dire¢do de aj, a}, e a} sdo definidos pelo caso em que i = j na equagao (2.47). Podemos encontrar
outra expressdo para os vetores da seguinte forma (GIACOVAZZO et al., 1992):

aj = p(az x ag), (2.48)

tal que p é uma constante, e seu valor pode ser obtido ao tomar o produto escalar por a; nos dois lados da

equagdo (2.48):

al-a; =2n =p(ag x ag-a;) =pV (2.49)
portanto:
2w

De forma andloga a defini¢do feita para aj podemos descrever os vetores da rede reciproca como:
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2m(az X a
al = M’ aj = L 298 af = L2 (2.51)

%

com respeito ao modulo, temos:

besin o acsin 8 absiny
a; = . a- , ay = 2500 (2.52)
v \% \%
Para o caso unidimensional, a construcao da rede reciproca é bastante simples, como a; -aj = aja] =
27, e portanto a] = ?TT; Para o caso bidimensional, o calculo de aj e a% pode ser feito definindo quatro

parametros «, 8,0, em um sistema de coordenadas apropriado, de forma que aj = («, ) e aj = (4,7), e a
substitui¢do na equagdo (2.47) gera 4 equagbes. Para o caso tridimensional se torna mais conveniente usar
a definicdo dada pela equacdo (2.51). Na figura (2.12) é possivel ver a comparacdo entre a rede direta e
sua reciproca para o caso de 1, 2 e 3 dimensdes. Caso a rede direta ndo seja ortogonal, os vetores da rede
reciproca e da rede direta nao sao necessariamente paralelos, esse caso pode ser visto para rede hexagonal
2D.

A equagdo (2.47) insinua que as fungoes da rede reciproca e da rede direta podem ser trocadas, isto

é, o reciproco da rede reciproca é a rede direta. Assim, temos que (GIACOVAZZO et al., 1992):

27r(a3 x a}) 2m(ay x aj) 27(ay x aj)
T a2 = T a3 = T

em que V* é o volume da célula da rede reciproca calculado por V* = aj - a} x aj.

a; = (253)
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Figura 2.12: Comparagao entre rede real e rede reciproca para uma, duas, e trés dimensoes.

Real Reciproca
1D
a 2rt/a
oo o o o | o o o o o
a, al*

Fonte: Adaptado de (ALS-NIELSEN, 2011).
Os pontos da rede reciproca sido definidos por um vetor do tipo:

G = hal + kaj + a3, (2.54)

no qual hkl sdo os indices de Miller referente a uma familia de planos, portanto todos inteiros. O vetor Gpy;
possui a propriedade de ser normal a familia de planos (hkl). Na figura (2.13) esta representado um plano
(hkl) com os vetores vy e vo dados por (ALS-NIELSEN, 2011):
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Vy,=21 22 (2.55)

Figura 2.13: Plano cristalografico evidenciando que o vetor G é perpendicular a essa familia.

Fonte: (ALS-NIELSEN, 2011).

Um ponto no plano pode ser descrito pela combinacao linear dos vetores vy e va, de forma que
v = A\vi + Aava. De acordo com a equagio (2.54) temos que o produto escalar entre G e v ¢ dado por:

G v = (ha', ka},la}) - ((Az a2 )22

a
- =z )\173> = 27(Ag — AL — A2+ A1) = 0. (2.56)

Portanto, como G - v = 0 temos que Gpy; ¢ normal ao plano (hkl). Podemos também obter uma
relacao entre o espagamento dpx; € 0 vetor G- Como o espacamento do plano dpx; representa a distancia
da origem até o plano, que estd na direcao de thl, temos que a projecao de qualquer vetor que conecte a

origem ao plano com Gy, ird descrever dpx;. Usando essas consideracoes temos:

ap thl 2
dy = — - = 2.57
MR |Gretl  |Ghrl (2:57)
e assim:
2
dpkl = ——. 2.58
M G (2.38)

2.4.2 Espalhamento por uma nuvem de elétrons livres

Pode-se descrever as propriedades opticas dos materiais para fétons com energia acima de 30 eV
através do fator de espalhamento atomico, também chamado de fator de forma atomica. Para as energias de
fotons de interesse, os elétrons sdo os principais elementos espalhadores, e um dtomo nao ird agir como um
espalhador pontual, mas sim espalhar por um volume ocupado pela nuvem eletrénica que envolve o niicleo.
A amplitude observada em uma dire¢ao qualquer, a um angulo 20 com relagao ao feixe incidente, serd o vetor

soma das amplitudes referente a cada elemento espalhador na nuvem eletronica, como é mostrado na figura
(2.14) (WILLMOT, 2011).
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Figura 2.14: Espalhamento eléstico por uma nuvem de elétrons em volta de um atomo. (a) ondas espalhadas
com diferentes amplitudes e fase. (b) vetor espalhamento Q descrito como a diferenca vetorial de k? e k/.

k' = kf =2m/)

p(r)

Fonte: Adaptado de (ALS-NIELSEN, 2011).

O vetor Q é conhecido como vetor de espalhamento, visto na figura (2.14 b), sendo que 7Q corresponde
a transferéncia de momento transferida ao foton espalhado. Q é calculado pela diferenca entre vetor de onda
incidente k' e o vetor de onda difratado kf, de forma que (WILLMOT, 2011):

Q=k' -k, (2.59)
e sua norma dada por:
4
Q= Tﬁ sin 6. (2.60)

Pela abordagem classica, os elétrons atomicos sao vistos como uma nuvem carregada envolvendo o
nicleo, com densidade eletronica p(r). Assim, a carga em um elemento de volume dr na posigio r é —ep(r)dr,
e a integral p(r) é igual ao ntumero total de elétrons no dtomo. Portanto para encontrar uma expressao para
a amplitude do espalhamento, devemos ponderar a contribuicido em dr pelo fator e’@*, e depois integrar em
dr, da seguinte maneira (ALS-NIELSEN, 2011):

Z paraQ —0

Q) = /p(r)e"Q""dr (2.61)

0 para Q — o
O fator de espalhamento atémico f descreve a amplitude de espalhamento de um atomo, sendo ex-
pressa por unidades de amplitudes de espalhamento de um tdnico elétron. Além disso decai monotonicamente
com o aumento de Q. Para o caso em que a direcao de incidéncia coincide com a de observacao, temos que
a amplitude de espalhamento sera simplesmente o nimero atdémico Z, ja que todos os objetos difratantes

espalham em fase. Para o limite em que Q é muito grande, o fator de fase entre os elementos de carga
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(p(r)) ird variar rapidamente, resultando em uma interferéncia destrutiva. Dessa forma a integral, mesmo
ponderada pela variagao lenta de p(r), ird tender a 0. Vale ressaltar que a amplitude total de f para um
atomo ¢ a soma da parte dependente de Q (f°) com os fatores de corregao de dispersio dependentes apenas

da energia f’ +if”, que se originam pelo fato de os elétrons estarem ligados a um atomo.

2.4.3 Espalhamento por um cristal

Para um material cristalino, composto por dtomos, podemos escrever a amplitude de espalhamento
da forma (ALS-NIELSEN, 2011):

N atomos

Fcristal(Q) — Z fl(Q)eiQ'rl’ (262)
l

em que f;(Q) é o fator de forma atomica definido na equagdo (2.61) do atomo que estd na posigdo r;. Pela
periodicidade do cristal temos que r; = R,, + r;, tal que R,, € um vetor da rede e r; é a posi¢do do j-ésimo
atomo dentro da uma célula unitéaria. Assim, podemos decompor o somatério da equacido (2.62) da seguinte

forma:

Rede Base

N atomos

Fcristal(Q) — Z fl(Q)eiQ'(RnJFrj) — Z eiQ'Rn Z fj(Q)eiQ'rj . (263)
l n J

Portanto, a partir dessa abordagem é possivel separar a componente da somatoria referente a rede,
descrita pelo primeiro termo, e a segunda componente referente a base de atomos, chamado de fator de

estrutura de célula unitéria
Fele(Q) =) f;(Q)e' ™. (2:64)
J

2.4.4 Condigao de difracao de Bragg

William Henry Bragg e seu filho William Lawrence Bragg explicaram o padrao dos picos de difracao
de raios X através de sua conhecida equagao que leva seus nomes: a lei de Bragg. Para obter a lei de Bragg
em geral se parte de um desenho esquematico como mostrado na figura (2.15). Consideramos um feixe de
raios X incidindo com angulo de 6 sobre o plano da superficie da amostra com vetor de onda k?, gerando um
feixe de onda espalhado com vetor de onda k/. Como o espalhamento é elastico temos que |k’| = [k/| = 2F.
Seja d a distancia interplanar entre a familia de planos (hkl), temos que a diferenga de caminho percorrida
pelos feixes é de 2dsin 6. Dessa forma para ocorrer interferéncia construtiva a diferenca de caminho deve ser

um multiplo inteiro do comprimento de onda, e temos que (WILLMOT, 2011):

mpA = 2d sin 6, (2.65)

que é a lei de Bragg, com m; um inteiro.

A conclusdo mais importante que decorre dessa lei é a de que quando a equacgao (2.65) ¢ satisfeita,
temos que o vetor espalhamento Q, definido pela equagao (2.59), é perpendicular aos planos que estdo em
condicao de difracdo de Bragg. Esse fato é mostrado na figura (2.15). Além disso, sempre que a condicdo de

difracéo é satisfeita, o vetor Q tem sua base na origem do espago reciproco (000), terminando em um ponto
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Figura 2.15: A lei de Bragg descreve a difra¢ao da radiacdo elasticamente espalhada por uma familia de planos
atomicos, que possuem distancia dpg;. Para a condigao ser satisfeita, a diferenca entre os feixes difratados
adjacentes deve ser um multiplo inteiro do comprimento de onda. O Vetor Q é a diferenca vetorial entre o
feixe incidente e o feixe difratado.

Fonte: Adaptado de (ALS-NIELSEN, 2011).

(hkl) referente a familia de planos que esté satisfazendo a condigdo de difragdo, como mostrado na segio
(2.4.8).

2.4.5 Condic¢ao de difragao de Laue

O nimero de termos referente ao somatoério da rede é enorme, podendo ser estimado para um pequeno
cristalito de 1 um3, ser da ordem de 10'? vezes o volume da célula unitaria ou mais. Cada um dos termos é
um niimero complexo de fase e®» localizado em algum lugar do circulo unitario. A soma dos fatores de fase
é da ordem da unidade, exceto para o caso em que as fases sdo multiplos de 27, resultando em uma soma
da ordem de “N” células unitarias. Para satisfazer a condicao temos que a contribuicdo da rede da equacao
(2.63) deve espalhar em fase, para isso (ALS-NIELSEN, 2011):

Q- R, =2rm, (m,=0,+1,42,..). (2.66)

E possivel mostrar que o vetor Gy, definido na equagio (2.54), satisfaz a condicio da equacio
(2.66), de forma que:

G- R, = (ha], ka3, la3) - (n1a1, nsas, nzag),

G - R, = (hniaja; + knqalas + Inzajas)

G - R, = 2w (hny + kns + Ing). (2.67)
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Como todas as variaveis dentro dos parenteses sdo inteiros, seus produtos também sao inteiros, temos
que o resultado é um multiplo inteiro de 27. Portanto, se o vetor Q for igual ao vetor G o cristal ird espalhar
em fase. A condicdo de difragdo de Laue é, portanto:

Q=G. (2.68)

Um resultado importante é que a condicao de difracao de Bragg é na verdade o escalar da condigao

de Laue, da forma |Q| = |G|. A partir das equagdes (2.58) e (2.60) temos que:

47 27

—ginf = — 2.69

A dhki (2.69)
rearranjando temos:

A = 2dp;sind, (2.70)

que resulta na condi¢ao de difra¢do de Bragg.

2.4.6 Soma da rede

Para considerar a intensidade referente a uma dada reflexao de Bragg é indispensavel estimar a soma
sobre a rede, definida na equagao (2.63), da forma:

Sn(Q) =) ¥R, (2.71)

Sera abordado o caso da soma em uma, duas, e trés dimensoes. Como se quer encontrar uma expressao
para a intensidade, também sera calculado o médulo quadrado da soma da rede, |Sx(Q)|?> (ALS-NIELSEN,
2011).

2.4.6.1 Soma em uma dimensao

Para o caso de uma dimensao temos que um ponto sobre a rede pode ser descrito por R,, = na em
que n é um inteiro e a é o parametro de rede. A soma da equagdo (2.71) para uma rede unidimensional finita
com N células unitarias se resume a (ALS-NIELSEN, 2011):

N—-1 )
Sn(Q) =) eone (2.72)
n=0

Os calculos para uma soma geométrica como essa ja foram considerados na secdo (2.3.4). Dessa

forma podemos escrever a equagao (2.72) como:

sin (N 52 “)
ISv(Q)l = —7 5 (2.73)
sin (7‘1)

A soma da equagdo (2.73) para grandes valores de N gera picos bem definidos sempre que o denomi-
nador se anula. Como N representa o niumero de células unitarias em um cristal, mesmo para um cristalito
pequeno como algumas dezenas de p, N é um valor gigantesco ja que a é da ordem de A . A condicio é

Qa

satisfeita sempre que <5* = hm, com h sendo inteiro, ou de forma explicita:
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2w
Q=h=— =ha" =Gy, (2.74)
a
em que Gy, é um vetor da rede reciproca. Como ja era de se esperar, a soma da rede leva a condi¢ao de
difracdo de Laue. Para estudar o comportamento da equagio (2.73) proximo a vizinhanga de um tnico ponto
da rede em que a condicao é quase satisfeita, serd introduzido o parametro €, de forma que:
Q= (h+ea", (2.75)
assim o médulo da soma da rede é descrito por:

sin(Ne)

|Sn(e)| = Sin(re) — N conforme €— 0. (2.76)
Podemos estimar a largura para N grande definindo € = ﬁ:
1 1 2 N
Syle=—)|~——=(—|N~—. 2.77

Assim, um pico com altura N, e largura & meia altura em torno de ﬁ, temos que a area se aproxima da
unidade. No limite em que N — oo temos que de fato a area se torna igual a 1. Dessa forma podemos

escrever o modulo da soma da rede como:

[Sn(€)] = d(e), (2.78)

em que d(€) é a funcdo delta de Dirac. Podemos reescrever o resultado da equagdo (2.78) de uma maneira

mais geral em func¢io de Q, de forma que:

[Sn(Q) = a” D 6(Q - Gy), (2.79)
Gh
tal que a soma é tomada sobre todos os pontos da rede reciproca. A fator a* é devido ao fato de que
_ x\ _ 6(e)
0(Q—Gy) =d(ea”) = =
Para experimentos de difracdo é interessante encontrar uma expressao para o quadrado da soma da
rede. Com argumentos similares aos dados anteriormente para a soma da rede de difracao por NV fendas

(2.3.4) pode-se mostrar que (ALS-NIELSEN, 2011):
[SN(Q) = Na* Y _5(Q — Gy). (2:80)
Gh

2.4.6.2 Soma em duas e trés dimensoes

No caso de uma rede bidimensional temos que os vetores da base sao dados por a; e a5. Para o caso
especial em que o cristal possui o formato de um paralelepipedo, possuindo N7 células unitarias ao longo de
a;, independente do namero da linha 1,2,..., N5. A partir do mesmo raciocinio utilizado para o caso 1D

temos que:

|Sn (€1, €2)[* = N1Nad(er)d(e2), (2.81)

para grandes valores de Ny, No. Ou ainda:
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1SN (Q)]> = (N1a])(N2a3) > 6(Q—G) = NA*) 5(Q - G), (2.82)
G G

no qual G = haj +kal, N = N1 N, é o nimero de células unitarias, e A* é a area da célula unitaria no espago
reciproco. Para um caso mais geral nao é possivel obter uma solugao analitica, porém, o carater da funcao
delta sera mantido para qualquer formato de cristal em quanto o nimero de células unitarias for grande nas
duas direcoes.

Pode-se generalizar os resultados obtidos para o caso bidimensional para o caso tridimensional de
forma bastante direta. Novamente. para o caso geral ndo é possivel derivar uma expressao analitica, mas
para o caso em que o cristal macroscépico é um paralelepipedo é possivel. Para um nimero grande de células
unitarias em todas as trés dimensoes, temos (ALS-NIELSEN, 2011):

ISN(Q))? = NV 6(Q - G), (2.83)
G

tal que G = haj + kaj + ka3, V. é o volume da célula unitaria no espago reciproco, e N é o nimero de

células unitéarias no cristal.

2.4.7 Contribuicao da base

Para avaliar a parte da base da soma da equagao (2.63) consideremos a figura (2.16). Nela, o feixe
incidente é espalhado pelas nuvens de elétrons envolvendo o ntcleo dos trés atomos aq, as, ¢ az da célula
unitaria. A amplitude da ondas espalhadas swl, sw2, e sw3 & proporcional a soma do espalhamento de
cada elétron envolvendo o atomo, i.e., o fator de espalhamento atémico, mencionado na se¢ao (2.4.2). Além
disso, temos que a fase de cada onda espalhada depende da posicao do atomo com respeito a célula unitaria.
Para avaliar como as ondas espalhadas por cada dtomo se soma na direcdo em que a condicao de difracao é
satisfeita, é conveniente utilizar o diagrama de Argand, mostrado na figura (2.16). Chamamos a amplitude
total de espalhamento, calculado pela soma f; + f3 + f3 da onda espalhada pelos atomos dentro da célula
unitéaria de fator de estrutura (Fpx;). Temos que a intensidade relativa a uma familia de planos Iy, ¢ dado
pelo modulo quadrado de Fpg (WILLMOT, 2011).

Existem casos em que o vetor espalhamento dos dtomos dentro de uma célula unitaria se cancelam
mutuamente para determinada reflexdo, culminando em um fator de estrutura nulo. A essas reflexdes em
que (Fpy) se anula se da o nome de extingdes, em geral as extingbes estdo relacionadas a grande simetria
por parte da amostra. Por exemplo, pode-se mostrar que o fator de estrutura de uma rede ctubica de corpo
centrado é zero se h + k 4 [ for um inteiro impar. O fendmeno das exting¢oes evidencia o fato de que devemos
considerar as posigoes e amplitude de espalhamento dos atomos entre os planos do cristal, e nao apenas a o
espacamentos entre esses planos.

2.4.8 Esfera de Ewald

Para auxiliar a visualizagdo da condi¢ao de difracdo no espago reciproco, é comum utilizar a esfera
de Ewald, ou seu anélogo circulo de Ewald para o caso bidimensional. Para isso, consideremos um feixe
monocromatico incidindo em uma amostra, em um espago 2D por simplicidade. Pela condigao de difracao de
Laue, temos que o vetor Q tem de ser igual ao vetor de rede reciproca Gpr = haj + kal mostrado na figura
(2.17 (a)). Temos por convencio que o vetor k? incide sobre a origem da rede reciproca, possuindo sua base

em A, como mostrado nas figuras (2.17 (b),(c)). Dessa forma, desenha-se um circulo centrado em A com raio
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Figura 2.16: (a): Feixes espalhados pelos dtomo dentro de uma célula unitaria. (b): Diagrama de Argand
representado a soma que culmina no fator de estrutura.

(a) feixe (b)

incidente

imaginério

A

Y

f1 real
Fonte: Adaptado de (WILLMOT, 2011).

igual a |k'| = [k/| = 2T figura (2.17 (b)). Qualquer ponto da rede reciproca que tocar circulo ird satisfazer
a condicao de difracao de Laue, e um pico de difracdo sera observado caso se posicione o detector na direcao
de k/. Na figura (2.17 (c)) ¢ mostrado um exemplo em que a reflexdio h = 1 e k = 2 foi escolhida para cair
sobre o circulo. Rotacionar o cristal é equivalente a rotacionar o circulo de Ewald em torno da origem O,
e assim outros pontos podem entrar em condi¢ido de difracdo. Podemos generalizar todas as consideragoes
citadas anteriormente para o caso tridimensional (ALS-NIELSEN, 2011).

Dependendo da configuracao do experimento, podem haver casos em que mais de um ponto da rede
reciproca caia sobre caia sobre o circulo de Ewald, gerando reflexoes simultdneas como mostrado na figura
(2.17 (d)). Um feixe parcialmente monocromaético pode ser representado ao se permitir que o circulo de Ewald
possua uma largura finita (AK). Para o limite em que se incide um feixe policromatico sobre a amostra,
todos as reflexdes entre os limites inferior e superior de comprimento de onda serdo observadas, como na
figura (2.18).
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Figura 2.17: (a): Ponto sobre a rede reciproca h = 1,k = 2. (b): Circulo de Ewald com k’ incidindo sobre
a origem e com sua base em A. (c¢): Circulo de Ewald escolhido para cair sobre a reflexdo (12). (d): Varios

pontos da rede tocando o circulo de Ewald.

0

t Ak

Fonte: Adaptado de (ALS-NIELSEN, 2011).

Figura 2.18: Circulo de Ewald para um feixe policromético, satisfazendo todas as condicoes de difracdo em

/7 XL ///// /
/ // % ){[ ///////////////
/77 W/ /

(ALS-NIELSEN, 2011).
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3 Controle e automacao do difratémetro

Em experimentos de difracao de raios X mais convencionais de bancada, em que se usa um difrato-
metro de 2 circulos, a amostra é em geral mantida fixa, enquanto a fonte e o detector se movem. Ja em
laboratorios de luz sincrotron nao se possui a possibilidade de se mover o feixe que incide na amostra, pois
ele é gerado a partir de uma fonte sincrotron em que os elétrons sdo acelerados. A alternativa que se tem
nesse caso é de mover o detector e a amostra a fim de satisfazer a condigao de difracao.

O difratometro de 4 circulos é um dos instrumentos mais populares para experimentos de espalha-
mento de raios X e néutron. Entretanto, apesar de sua popularidade, ele possui um ntmero insuficiente de
graus de liberdade requeridos para alguns tipos de experimento XRD em sincrotrons modernos. Como por
exemplo, ter a op¢ao de escolher a orientacao do plano de espalhamento, e consequentemente a polarizagao
do feixe incidente. Para superar as limitacoes impostas pelo difratémetro de 4 circulos, os difratometros de
5 e 6 circulos foram desenvolvidos, sendo esse tltimo o objeto do nosso trabalho (YOU, 2000).

Como o difratémetro possui 6 circulos (45+2D)?, e apenas 3 graus de liberdade sdao necesséarios para
determinar a orientacao de um cristal, devemos restringir pelo menos 3 dos 6 graus, ji que o sistema se
tornaria superdeterminado, causando inconsisténcias. O fato de haver graus extras de liberdade permite
vérias possibilidades, como evitar dngulos cegos, e ainda que o difratémetro suporte cargas mais elevadas
sem comprometer de mais a esfera de confusdo dos motores (YOU, 1999). Nas figuras (3.1) e (3.2) podemos
ver o modelo do difratometro Huber que a linha EMA possui, assim como o desenho esquemaético de um
difratometro de 6 circulos, respectivamente.

Observando os eixos definidos no sistema de coordenada do laboratério mostrados na figura (3.2)
ve-se que o eixo y é definido ao longo do feixe, e x é normal aos circulos i e v do difratometro. Os circulos
correspondentes aos angulos ¢, x, 1, e pu, ordenado do mais interno para o mais externo, sao os angulos
responsaveis pelo movimento da amostra e ¢, v, também ordenado do mais interno para o mais externo,
realizam a movimentagao de detectores. O sentido da rotacgéo dos eixos sdo mostrados na figura (3.2), vemos
que ¢, 1, e 6 possuem rotacao no sentido levogiro, enquanto y, i, € v tem rotacdo no sentido dextrogiro.

3.1 Equacao do difratémetro

Representando o vetor transferéncia de momento no espago reciproco por h em um sistema de
coordenadas dextrogiro, temos (YOU, 1999):

no qual a trinca (hy, ha, h3) € usualmente chamada de hkl, e af representa os vetores da rede reciproca.
A matriz B definida no apéndice B, a partir dos componentes dos vetores da rede direta e reciproca
do cristal, ortonormaliza o sistema de referéncia cristalografico. De forma que a transferéncia de momento é

expressado no sistema de coordenadas do laboratorio, assim temos:

h. = Bh. (3.2)

Agora pode-se definir um vetor hy que representa a orientacao do vetor h. quando a amostra é

montada no eixo ¢ do difratémetro com todos os circulos posicionados em 0. Para isso é necessario a matriz

4Terminologia usual para evidenciar que o difratémetro em questdo possui 4 circulos de amostra e 2 de detectores.
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Figura 3.1: Desenho do difratometro Huber.

Fonte: Linha EMA do Sirius.

Figura 3.2: Desenho esquematico de um difratéometro.

Xx-ray beam

Fonte: (YOU, 1999).

de orientacao U, que tem a funcao de definir o desalinhamento entre o eixo cartesiano com os eixos do sistema

de coordenadas do laboratorio. E assim:

hy = Uh, = UBh. (3.3)

Como a matriz U apenas rotaciona ou reorienta o sistema cartesiano, se trata de uma matriz ortonormal.
Algumas maneiras de obtencao dessa matriz serdo discutidas posteriormente.

Seja h; definido como a rotacao de hy pelo j-ésimo circulo de amostra. Dessa forma, pode-se escrever
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uma relagdo que leva h até hyg, o sistema de coordenadas do eixo mais externo de amostra (x) (YOU, 1999)

h2h Lhy S h, S0, Sh, 2% h0,. (3.4)

Tal que as matrizes ®, X, H, e M, mostradas nas equagoes (3.5 - 3.8), sdo as matrizes de rotagao
respectivas a seus circulos, e suas diregoes de rotagdo sdo mostradas na figura (3.2). E interessante perceber
que todas as matrizes, exceto B, sdo ortonormais, e assim podemos usar a relacio A~! = AT em que A~!

e AT representam a matriz inversa e transposta de A respectivamente.

cos¢ sing 0
P =|—-sing cos¢ 0], (3.5)
0 0 1

cosy 0 siny
X = 0 1 0 ) (3.6)

—siny 0 cosy

cosnp sinn 0

H=|-sinn cosnp 0], (3.7)
0 0 1
1 0 0
M=]0 cospu —sinu|. (3.8)

0 sinpg  cosp

A partir do movimento dos eixos de detectores (§ e v), podemos definir a posicdo do detector no
sistema de coordenadas fixado no circulo de ¢. Avaliando o sistema quando a transferéncia de momento é 0,
de forma, que os dois angulos de detectores sdo zero, logo o vetor de incidéncia k’ ¢ igual ao vetor difratado

kf e ambos estdo na direcio do eixo y. Assim, temos:

o

k) =k'=|k|, (3.9)

=}

no qual k£ é o namero de onda. Podemos obter esse vetor no sistema de coordenadas do laboratoério para uma
transferéncia de momento ndo nula a partir das seguintes transformagcées (YOU, 1999):

ki 2kl Lk (3.10)
tal que as matrizes de rotagdo A e IT seguem o sentido mostrada da figura (3.2), e sdo dadas por:

cosd sind O

A=|—-sind cosd 0], (3.11)
0 0 1
1 0 0
II=]0 cosy —sinv |, (3.12)

0 sinv cosv
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e assim temos que:

0 sin &
k/ =kIIA | 1| =k [ cosvcosd | (3.13)
0 sin v cos 6

Para satisfazer a condicdo de difragio de Laue (G = Q), temos que h,;, que descreve como G estara
no sistema de coordenadas do laboratério, tem de ser igual ao vetor de espalhamento (Q), que é determinado
pelos circulos de detectores no sistema de referéncia do laboratério. Para enfatizar o fato de que a orientagao
do vetor depois de todas as rotagoes esté no sistema de referéncia do laboratorio, serd introduzido o subscrito
L, a equacao de difracao para o difratometro é:

hy = Qs (3.14)

tal que:

h); = MHX®UBh = MHX®hy = Zh, (3.15)

Em que Z = MHX®, e Q;, é dado por:

0 sin §
Qr=k/ —ki =(TIA-I)| k| =k | cosvcosd —1|. (3.16)
0 sin v cos §

Analisando as equagoes (3.15) vemos que h,; depende apenas do eixos de orientagdo de amostra,
enquanto a equagao (3.16) evidéncia que Q, ¢ descrito somente pelos eixos de orientacdo de detectores.

3.2 Pseudo-angulos

Para simplificar a geometria de espalhamento convém definir, no sistema de coordenadas do labo-
ratorio, angulos que nao correspondem aos angulos reais do difratometro, que sao em geral baseados em
consideragdes mecanicas. Esses dngulos serdo utilizados para definir a orientagido de vetores como o vetor de
espalhamento (Q), o vetor do feixe difratado (k/), ou o vetor de referéncia n. Pelo fato desses vetores nio
possuirem uma correspondéncia direta com os dngulos reais, eles sao chamados de pseudo-angulos, alguns
dos quais sdo mostrados na figura (3.3) (YOU, 1999).

O pseudo-angulo de maior importéincia é o 6, definido pela equagao de espalhamento, como (YOU,
1999):

|Q| = 2k sin6. (3.17)

Podemos ver na figura (3.3) que o dngulo 6 define o raio da esfera que intersepta a esfera de Ewald. O sistema
de coordenadas do laboratorio é fixado no centro dessa esfera, e denotamos a intersecgao entre ela e a esfera
de Ewald por Ck. O plano delimitado pela a interseccdo Ck ¢ normal ao feixe incidente (k'), e portanto o
angulo de Q com respeito ao plano zz é 0. Pode-se determinar a orientagdo de Q definindo um outro angulo

azimutal 9°. Os pseudo-angulos mais fundamentais sdo o § e o 9, ja que o vetor de espalhamento Q pode

5Usualmente chamado de qaz.
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Figura 3.3: Defini¢ao de alguns pseudo-angulos mostrados com o vetor de espalhamento e a esfera de Ewald.

Ck
Ewald Sphere

Fonte: (YOU, 1999).

ser escrito tanto em func¢io dos pseudo-angulos como dos angulos reais. De forma que Q gera as seguintes

relagoes:
Q ) sin 6
A L
_ - _ 3.18
QL Q] Zem0 cosvecosd —1 |, (3.18)
sin v cos &
ou ainda:
cos 0 sind
QL= -sind |. (3.19)
cos 0 cosd

Podemos obter a partir das equagoes (3.18) e (3.19) as expressdes que seguem:

cos 20 = cos d cos v, (3.20)
tan §

tand = 22 (3.21)
sin v

Quando cosd = 0, v = 0, assim, o pseudo-angulo gaz define o adngulo azimutal do plano de espalhamento,
de forma que para qaz = 3 o plano de espalhamento é vertical, ja que v = 0 nesse caso, e quando qaz =0 o
plano de espalhamento é horizontal, pois § = 0.

Definimos também um vetor de referéncia n, que em geral é tomado como sendo normal a superficie
da amostra, porém, pode ser escolhido de forma arbitraria, e temos que n’ = Qi mostrado na figura (3.3).

Tal que a representacdo de n do sistema de referéncia do laboratorio se da por (YOU, 1999):
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cos asin ¢
iy =7Zng = —sina | . (3.22)

COS (v COS ¢

A partir da equagao (3.22) podemos encontrar relagoes para os pseudo-angulos a e %, assim, temos:

sina=—1p -y, (3.23)
tanp = -k (3.24)
ny -z

O pseudo-angulo 7 representa o angulo azimutal de n’ medido com respeito ao vetor espalhamento
e o plano de espalhamento, i.e, plano formado pelo feixe incidente e pelo vetor de espalhamento, assim 7 é o

angulo entre o vetor Q e o vetor referéncia n, calculado por:

cosT = Q- n. (3.25)

Quando n é de fato definido como a direcdo normal da superficie da amostra, temos que o pseudo-
angulo a representa o angulo de incidéncia. Portanto, é conveniente definir outro pseudo-angulo chamado de

B, que representa o angulo de saida, dado por:

k' -
sin 8 = Tnn (3.26)
Das equagoes (3.23) e (3.26), temos que:
: . kK -k
sina + sin 8 = 7 ‘N
sina 4 sin 8 = 2sin(Q - i)
sina +sin 8 = 2sinf cos T
portanto:
sin 8 = 2sinf cos T — sin a. (3.27)

Para definir o pseudo-angulo conhecido como 1, comecemos por definir um sistema de coordenadas
no qual o vetor Q estd ao longo do eixo 2’ e Q X ¥ estd ao longo do eixo 2’. Nesse sistema o eixo 2’ é
perpendicular ao plano de espalhamento. Definimos o valor 0 do angulo azimutal v, como sendo o caso em
que o vetor referéncia n esta no plano de espalhamento proximo ao sentido positivo do eixo 3/, temos que o
vetor n’ aponta para a interseccdo entre os circulos CQ e CS, visto na figura (3.3). Descrevendo os vetores
no sistema de coordenadas Q, resulta em (YOU, 1999):

—sind
RZQ =| cosf |, (3.28)
0

6Usualmente chamado de naz.

43



Ré = | cosf |, (3.29)
0
COST
g = |sinTcosy | - (3.30)
sin 7sin

Podemos obter, a partir das equagdes (3.28 - 3.30), a descri¢io do angulo de incidéncia e saida em

funcao de 1, como:

sina = —1222 -flg = cosTsiné — cosfsin T cos 1, (3.31)

sinf3 = Rg -Nig = cosTsinf + cosfsinT cos P, (3.32)
por fim, obtemos ¢ das seguintes formas:

cosTsinf — sin «
cosy =

: (3.33)

sin 7 cos 6

—cosTsinf + sin 3

cosp = (3.34)

sin 7 cos 6

Um modo bastante comum em um difratometro de 4 circulos (3S + 1D) é o chamado w = 0 ou
modo do bisseccionamento. Nele, Q é paralelo ao plano do circulo do x. Para um difratometro de 6 circulos
esse modo pode pode ser reproduzido tanto para o plano de espalhamento na vertical (gaz = 90°) como na
horizontal (gaz = 0°) tomando n = g e i = 3, respectivamente. Entretanto, por se tratar de um difratometro
de 6 circulos ainda existe outro grau de liberdade que deve ser restringido, dessa forma é definido o pseudo-
angulo w como sendo o angulo entre Q em relagao ao plano do circulo do x. Como o eixo do circulo do x
estd ao longo de ¥ quando n = u = 0, temos a relagdo Q -(MHy) = cos(w + %), disso temos que (YOU,
1999):

(sinnsind + sin psinn cosd) — (cos pcosn) sinf = sinw. (3.35)

com isso é finalizado o calculo dos pseudo-angulos relevantes, levando em consideracdo apenas os angulos

reais de motores.

3.3 Calculo da matriz de orientacgao

Existem algumas formas de se calcular a matriz U, podendo ser a partir de duas reflexoes, caso se
conheca os parametros de rede da amostra, ja que é necessario a matriz B para esse calculo. Para o caso
em que os parametros de rede nao sao conhecidos, é possivel obter U a partir de trés reflexdes. Com essa
abordagem, além da matriz de orientacao, é possivel também obter os parametros de rede da amostra. Uma
outra maneira de obtencao da U, que nao sera discutida aqui, se baseia em um processo de refinamento,
em que varias reflexoes sao utilizadas, a fim de realizar um processo de minimos-quadrados para refinar os
parametros de rede e orientacdo simultaneamente (BUSING; LEVY, 1967).
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3.3.1 Calculo de U a partir de 2 reflexoes

Através da equacdo do difratometro definida pela equacdo (3.14), podemos obter um versor uyg,
descrito no sistemas de coordenadas ¢ na direcdo de hy, a partir das equagdes (3.14), (3.15), (3.18), da
seguinte forma (YOU, 1999)(BUSING; LEVY, 1967):

u, = TXTHTMTQ,, (3.36)

em que o fato das matrizes de rotacao serem ortogonais foi utilizado para considerar a transposta em vez
da matriz inversa no calculo. A partir dessa abordagem, podemos definir dois vetores unitarios u;4 e uz4,
obtidos a partir da primeira e segunda reflexdo, respectivamente.

Assumindo que os parametros de rede da amostra ja sdo conhecidos, podemos calcular os vetores
espalhamento no sistema de referéncia cartesiano do cristal para cada uma das reflexdes, da forma:

h;. = Bh;
(3.37)
hy. = Bhy
de forma que, idealmente, a matriz B deveria realizar a seguinte transformacao:
h;y = Uhy,
' e L (3.38)
hyy = Uhy,

Portanto u;4 e ugy estariam na diregao de hi4 e hay, respectivamente. Contudo isso ndo acontece na
realidade, ja que existem erros experimentais na medi¢ao dos dngulos, e incertezas associadas aos pardmetros
de rede. Dessa forma, nao é possivel na pratica encontrar uma matriz U que satisfaca as duas condicoes
impostas pela equagdo (3.38). O que basicamente significa que o angulo subtendido por h;. e hy, difiram do
subtendido por uj4 e ua4, respectivamente.

Para prosseguir com o célculo, evitando a dificuldade imposta pelos erros experimentais, seré utilizado
a seguinte abordagem. Primeiramente forcemos que hi, tenha a mesma dire¢do de uie, igual definido
anteriormente, porém, hyg s6 serd restringido a estar no plano definido pelos vetores h;y e hyy. Logo,
a primeira reflexao define a direcao de um vetor do cristal, enquanto a segunda determina um angulo de
rotagdo em torno desse vetor.

Definindo trés vetores unitarios ti., to., e t3. em um sistema ortogonal dextrogiro no sistema de
coordenadas cartesiano do cristal, de forma que ti. seja paralelo a hy., toc é restringido a estar no plano
definido pelos vetores hi. e hy., e t3. é perpendicular a esse plano. De forma analoga definimos outra trinca
tie, tag, € t3y porém no sistema de coordenadas ¢, baseados agora, nos vetores u;4 € uzy. A matriz U deve
satisfazer as seguintes equagoes (BUSING; LEVY, 1967):

tng = Utne 5 n=1,2,3. (3.39)

Definindo a matriz T, com suas colunas compostas pelos vetores ti., to., € ts., €, analogamente, a
matriz T4, com suas colunas compostas pelos vetores ti4, tag, € t34, podemos escrever as 3 equagoes vetoriais
da equacdo (3.39) em apenas uma equagdo matricial, da forma:

T, = UT,, (3.40)

e assim:
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U=T,T.' =T,T.. (3.41)

Ja que pode ser mostrado que T, é uma matriz ortogonal.

3.3.2 Calculo de U a partir de 3 reflexoes

Quando nao temos informagcdes sobre o parametro de rede da amostra torna-se necessario a informa-
¢ao de mais uma reflexao para o calculo de U. Para u;, n;, xi, ¢i, Vi, 0;, € 20; referente a reflexao i, podemos
calcular u; a partir da equagdo (3.36), e assim calcular o vetor espalhamento no sistema de coordenadas ¢

2sin 91
= e

Pela equagao (3.42) vemos que energia em que o experimento foi realizado também ¢é levada em

h;, (3.42)

consideragao (\). Para cada uma das trés reflexdes a matriz UB deve realizar as transformacdo a seguir:

h;;, = UBh;, (3.43)

em que h; é simplesmente o vetor de indices (hkl). Definindo a matriz Hyg, que possui suas colunas compostas
pelos vetores colunas hi4, hay, e hsy, e a matriz H construida de forma analoga a partir dos vetores coluna

h;, podemos escrever a seguinte equagao matricial (BUSING; LEVY, 1967):

H, = UBH. (3.44)
E assim, calculamos UB da seguinte forma:

UB=H,H " (3.45)

Deve-se tomar cuidado ao selecionar as reflexdes para que os vetores da rede reciproca nao sejam
coplanares, caso contrario a matriz H serd singular. Apos obtermos UB podemos prosseguir e calcular os

parametros de rede a partir dela. Temos que:

(uB)"(UB) = (B)" (U)"(U)(B) = B"B. (3.46)
Pode-se mostrar que:

B'B=G!, (3.47)

tal que G~! representa o tensor métrico do espaco reciproco, discutido no apéndice A, com seus elementos

dados por:

(G™1)iyj = af - aj. (3.48)

Portanto, G é o tensor métrico mostrado no apéndice A, com elementos:

(G)ij = a; - a;. (3.49)

Podemos obter os parimetros de rede a partir da equagdo (3.49) considerando os elementos da

diagonal principal, temos que:
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a; = @ ’ (3.50)
enquanto os angulos sao obtidos através dos demais elementos da matriz, como:
G,
cosq; = 2 o 44 kAd (3.51)
a;ag

Com os parametros de rede calculados, podemos calcular a matriz B da maneira descrita no apéndice B, e,
por fim, obtemos U da seguinte forma:

U= (UB)B . (3.52)

3.4 Modos de operacao

Como ja citado anteriormente, o difratdmetro possui 6 graus de liberdade e para determinacao da
amostra no sistema de coordenadas do laboratoério sao necessarios apenas 3, portanto os 3 angulos restantes
precisam ser restringidos. Pelo fato de existirem esses graus extras de liberdade, existem muitos modos de
operacdo possiveis para o difratometro, muito mais do que para o difratometro de 4 circulos (YOU, 1999).
Uma maneira bastante conveniente de sumarizar esses modos ¢ mostrada na tabela (1), na qual a primeira
coluna faz referéncia aos angulos de detectores e alguns pseudo-angulos, na segunda coluna estdo presentes
apenas pseudo-angulos, as demais colunas sao basicamente compostos por eixos de amostra, exceto pelo

pseudo-angulo omega referente ao valor 0 da terceira coluna.

Tabela 1: Modos de operacao de um difratémetro de 6 circulos.

detector Reference Sample Sample Sample
0 . omega-fixed X X 0
1 | Delta-fixed | Alpha=Beta Eta-fixed Eta-fixed | Eta-fixed | 1
2 | Nu-fixed Alpha-fixed Mu-fixed Mu-fixed | Mu-fixed | 2
3 | Qazfixed Beta-fixed Chi-fixed Chi-fixed | Chi-fixed | 3
4 | Naz-fixed Psi-fixed Phi-fixed Phi-fixed | Phi-fixed | 4
5 X X Eta=Del/2 X X 5
6 X X Mu=Nu/2 X X 6

Fonte: Adaptado de (YOU, 1999).

Para cada modo de operacao sera necessario fornecer no minimo 3 das 5 colunas disponiveis, e apenas
um angulo de cada coluna deve ser escolhido. Isso deve ser feito de forma que néo se escolha mais de uma

vez um angulo de amostra que se repete nas colunas 3, 4, e 5. Portanto, caso o modo 21500 seja escolhido,

delta

significa que as restrigoes impostas serao: nu fixo, alfa = beta, e eta = <5, para o modo 20520 nu fixo, eta

— %, mu fixo, e assim por diante.

Por

exemplo, quando o angulo alfa representa o &ngulo de incidéncia do feixe com relacdo a superficie da amostra,

Cada modo de operacdo pode ser interessante para um tipo determinado de experimento.
fixar ele em um angulo baixo pode ser interessante para experimentos de difracdo em filmes finos. Pode-se
também utilizar um modo de operacao para emular um difratometro de 4 circulos. As possibilidades de

modos de operacao sao enormes, e devem ser escolhidas com base no que se pretende estudar.
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4 Mapeamento do espaco reciproco

Para a anélise dos dados gerados por um experimento de difracao de raios X, utiliza-se a abordagem de
ploté-los em graficos. Dependendo do tipo de experimento realizado, ou do tipo de anéalise que se queira fazer,
diferentes abordagens para visualizacao de dados devem ser utilizadas, podendo ser utilizados gréaficos de uma,
duas, ou trés dimensdes. A escolha do tipo de gréafico que seré utilizado dependera de um compromisso entre
o que se procura sondar e o detector/técnica disponivel. Nesse trabalho estamos interessados na reconstrugio
tridimensional do espacgo reciproco, que é uma evolu¢ao do método mais tradicional de andlise 2D, usando
como base para isso a linguagem de programacao Python.

Existem basicamente trés tipos de detectores, sendo eles: pontual, linear, e de area. O detetor
pontual é, em geral, utilizado para gerar graficos de uma dimensao, porém, nao excluindo a possibilidade do
mesmo de gerar graficos 2D, ou até mesmo, a priori, 3D. Entretanto a quantidade de tempo seria bastante
dispendiosa, podendo demorar varias horas para o mapeamento. O detetor linear é comumente utilizado
para gerar graficos 2D de forma bastante eficiente, j4 que para isso basta “varrer” o espago em apenas uma
direcdo, gerando assim uma area de intensidades. Além de mapeamentos 2D ele pode fazer mapeamentos
pontuais, ao selecionar uma regido de interesse (roi’) de apenas um pixel, podendo ainda, apesar de algumas
complicacoes, gerar graficos 3D. Por fim o detector de drea é capaz de gerar graficos 3D de forma rapida, ja
que para isso basta varrer apenas uma dire¢ao, para produzir um volume de intensidades, de forma analoga
ao detector linear, pode-se regular a roi de um detector de area a fim de emular um detetor linear, ou mesmo

um pontual.

4.1 TImagens digitais

Uma imagem no “mundo real” pode ser entendida como uma funcao de duas varidveis, da forma
I(x,y), em que a amplitude I(z,y) representa, por exemplo, o brilho ou intensidade relativa a posigdo (x,y)
da imagem no mundo real. Em geral, a amplitude de uma imagem serd um ndmero real ou um inteiro,
que resulta de um processo de quantizagdo que converte um intervalo continuo em um ntmero discreto de
niveis. Porém, em alguns casos envolvendo a contagem de foétons, como em detectores, a intensidade sera
intrinsecamente quantizada (YOUNG et al., 2004).

Podemos descrever uma imagem digital tomando um espaco 2D discreto, no qual, através de um
processo comumente chamado de digitalizagdo, a imagem I(z,y) passa a ser representada por I[m;,n;].
Nesse processo a imagem bidimensional continua I(x,y) é dividida entre N linhas e M colunas, sendo agora
um arranjo N x M, em que a intersec¢ao entre uma linha e uma coluna é chamado de pixel (YOUNG et al.,
2004). O valor da intensidade é dado por I[m;,n,], tal que {m; =0,1,2,....M -1} e {n;, =0,1,2,.... N —1}.
Na realidade, na maior parte dos casos, I(z,y), que pode ser considerado como o sinal que incide em um
detector 2D, é uma funcdo de varias outras varidveis, como a profundidade (z), comprimento de onda (), e
do tempo (t).

Na figura (4.1) pode-se ver uma imagem capturada por um detector de area, que possui 456 x 501
pixels, durante um experimento de difragdo de raios X. Nessa imagem, que possuia tamanho inicial de
456 x 501, foi selecionada uma roi em que 240 < m; < 272 e 235 < n; < 267 gerando uma imagem com
N = M = 32, em que o valor da amplitude de cada pixel I[m;,n;] foi normalizada. A roi selecionada
compreende um pico originado quando a condi¢do de difracdo é satisfeita para um cristal de Aluminato do
Lantanio LaAlOz (LAO) para a reflexdo (005).

"Do inglés region of interest, consiste em selecionar uma 4rea especifica do detector.
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Figura 4.1: Imagem de uma roi de um detector de area em que o pico de difragdo da reflexdo (005) do LAO
é mostrado.
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Fonte: O autor.

Como podemos ver na figura (4.1), uma “foto” de um detector de &rea tem a forma de um arranjo
N x M bidimensional, que quando é importado em uma linguagem de programacao como o Python se torna
conveniente usar a abstracao de tratid-lo como uma matriz. Durante um experimento usual de difragdo de
raios X, varias fotos sdo tiradas pelo detector, uma em cada passo angular, portanto no final desse processo
teremos L fotos disponiveis. Para processar e analisar essas L fotos é comum agrupé-las em uma matriz de
matrizes, um objeto tridimensional da forma L x M x N, que poderia ser entendido em algo como “empilhar”
as L fotos tiradas. O grafico desse arranjo seria algo como mostrado na figura (4.2), em que foram empilhadas
95 fotos de 456 x 501 pixels. A terceira dimensao acrescentada ao arranjo pelo agrupamento das fotos define a
matriz de intensidade tridimensional, dessa forma obtemos informagcdes referentes a um determinado volume
do espaco.

Analogamente ao detector de area, detectores lineares geram imagens da forma 1 x M, ou seja, temos

os pixels dispostos em uma linha, portanto um arranjo unidimensional. Seria o equivalente a selecionar uma
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Figura 4.2: Fotos de um detector de area empilhadas usando a biblioteca voltada para a visualizagdo de
dados Mayavi.

Fonte: O autor.

roi que se restringe a apenas uma linha de um detector de area. Logo, quando agruparmos vérias imagens
obtidas em um experimento por um detector linear, obteremos um matriz da forma L x M, o que significa
varrer uma determinada area do espaco tridimensional. Para o detector pontual, que possui apenas um pixel,
e o arranjo obtido é zero-dimensional 1 x 1, o agrupamento de L medidas tem simplesmente a forma de L,

i.e, varremos apenas uma direcdo do espaco.

4.2 Tipos de Plots
4.2.1 Plots 1D

Os plots de graficos 1D sao comumente feitos com detector pontual, sendo bastante corriqueiro na
anélise de dados de difratometros de bancada, que, em geral, possuem uma geometria de difratémetro mais
simples com apenas um eixo de amostra e um de detector. Existem também alguns difratometros de bancada
com 4 eixos (3S+1D) voltados para monocristais e filmes. Uma medida comum para gerar esse tipo de grafico
é a 6 — 260, na qual o o angulo de detector varia o dobro do angulo de incidéncia. Um grafico obtido a partir
desse tipo de técnica é mostrado na figura (4.3). Para esse plot é necessario apenas duas matrizes 1D, uma

contendo os angulos varridos em 26 e outra com a intensidade associada a cada um dos pontos.

4.2.2 Plots 2D

Como citado anteriormente, graficos 2D podem ser gerados com todos os tipos de detectores citados.
O gréfico 2D é capaz de transmitir uma quantidade muito maior de informagoes, quando comparado a um
grafico de apenas uma dimensdo. Nesse tipo de grafico, a intensidade é plotada como valores escalares na

forma de um mapa de cores, enquanto os eixos sao descritos pelas componentes do vetor Q. O gréfico da
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Figura 4.3: Gréfico 1D da difracdo de raios X de um monocristal de LAO.
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Fonte: O autor.

figura (4.4), foi obtido a partir de um experimento de XRD, em um cristal bulk® de LAO, utilizando-se um
detector de area, os dados foram tratados para simular um detector linear. O grafico foi gerado em Python,
com o auxilio da biblioteca matplotlib, sendo necessario duas matrizes bidimensionais, correspondentes as

componentes do vetor Q, e uma outra matriz 2D contendo os dados das intensidades.

Figura 4.4: Gréfico 2D da difracdo de raios X de um cristal de LAO.
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Fonte: O autor.

8Terminologia para descrever cristais macigos, inteirigos.
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Diferentemente do plot 1D, aqui foram utilizados componentes do vetor Q e ndo diretamente o dngulo
do difratometro. Por esse motivo, no processo de tratamento de pixel para dngulo e posterior conversao
de angulo para espaco Q, perde-se o grid igualmente espacado do detector. Isso pode acarretar alguns
problemas ao construir o grafico, dependendo de como o algoritimo utilizado para realizar o plot lida com
esse problema, e qual tipo de interpolacio sera feita para construir o grafico. O algoritimo do matplotlib ndo
apresenta problemas em processar esse tipo de dados, como pode-se ver na figura (4.4), na qual os dados sao
plotados sem nenhum tipo de tratamento prévio para correcdo do grid. Foi utilizado apenas um tratamento

logaritmico para evidenciar a intensidade.

4.2.3 Plots 3D

De forma anéloga & diferenca da quantidade de informagdes do grafico 1D para o 2D, os graficos
3D apresentam maior quantidade de informacao em comparacao a graficos 2D. Eles podem ser gerados por
todos os tipos de detectores citados, porém, como citado anteriormente, é preferivel a utilizacao de detectores
de area na maioria dos casos, ja que eles reduzem consideravelmente o tempo do experimento, quando se
estd interessado na contribui¢do da intensidade espalhada de raios X em todas as componentes Q, @, e
Q.. Espera-se que com a mudanca para o Sirius, o detector 2D seja o padrao, e que sua utilizacdo nao
comprometa o tempo do experimento se comparado & detectores linear e pontual, como acontecia no UVX?,

Em contraste ao processo de empilhamento mostrado na figura (4.2), em que as imagens do detector
foram empilhadas seguindo apenas a ordem de aquisi¢ao, nesse tipo de grafico é necessario informar também
a matriz de enderegos, definidas em relagdo ao vetor de espalhamento Q, para assim obter algo coerente e com
significado fisico. Nessa abordagem, as fotos tiradas pelo detector correspondem a intensidade relativa a uma
determinada posi¢ao das componentes de Q , e, por exemplo, o elemento (1,1,1) de cada uma das matrizes
(Qz,Qy, e Q) sao relacionados com o elemento (1,1,1) da matriz de intensidade, e assim sucessivamente,
implicando que, necessariamente, as matrizes possuam o mesmo formato L x M x N. O plot 3D ird gerar uma
imagem como mostrado na figura (4.5), que foi gerada pela fun¢ao isosurface do MATLAB. Como se trata
de 4 matrizes 3D, esse tipo de grafico apresenta uma grande quantidade de pontos, que consomem grande

quantidade de memoria, necessitando de um processamento potente para ser gerado com rapidez.

9Fonte de luz sincrotron desativada no CNPEM que ser4 substituida pelo Sirius.
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Figura 4.5: Grafico 3D de da difraco de raios X de um filme de 6xido de cobalto (Co304) em um substrato
de safira (Al,O3) gerado em MATLAB. (a) Vista 3D. (b) Vista do plano @,Q.. (c) Vista do plano Q;Qy.
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Fonte: Guilherme Calligaris.
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5 Metodologia

Com a mudanca do UVX para o Sirius, o Laboratério Nacional de Luz Sincrotron iniciou um movi-
mento visando que o Python se torne a linguagem de programacao padrao. Com a padronizagao linguagem
todo tipo de implementacao e integragao entre as varias linhas de luz e grupos de computagao se torna mais
facil. Portanto, o desenvolvimento de programas/scripts em Python se tornou bastante recorrente, além
disso, alguns scripts e programas que nao possuem mais suporte, ou eram escritos em linguagens obsoletas,
tiveram demanda para que fossem atualizados e transferidos para linguagem Python.

Atualmente o controle do difratometro da linha é realizado através do software chamado SPEC
(SPEC, 1998). Se trata de um software bastante conhecido e muito bom no que se propoe a fazer, i.e., mover o
difratometro de forma a sondar o espaco reciproco ao fornecer diretamente posicoes de hkl. Porém, ele é closed
source'”, e por isso atualmente ele & um gargalo em qualquer tipo de integracio que o envolva, dificultando o
desenvolvimento de novas ferramentas e integragoes. Usar o SPEC como ferramenta padrao para os proximos
anos pode nos deixar presos a respeito de futuros desenvolvimentos. Logo, trazer o desenvolvimento de uma
ferramenta como essa para o centro abre vérias possibilidades, nao apenas para novas integracoes por parte
dos grupos de computagao, como a possibilidade de o usuério realizar o experimento e sair da linha com boa
parte dos dados ja tratados. Portanto o desenvolvimento de uma ferramenta similar ao SPEC é extremamente
relevante, e a abordagem utilizada para dar inicio a essa tarefa desafiadora serd descrita nessa secao.

A reconstrucao tridimensional do espacgo reciproco, que anteriormente era realizada em MATLAB,
foi demandada para ser realizada em Python. E assim, trazendo esse desenvolvimento também em Python,
torna qualquer integracao necessaria muito mais direta. Isso abre a possibilidades de realizar essa andlise de
dados, complexa e computacionalmente dispendiosa, a partir da infraestrutura e conhecimento do Sirius. O
beneficio para os usudrios seria grande, ja que a extracao desse tipo de resultado da medida crua atualmente
depende totalmente do usuario. Em vista disso também é apresentada a abordagem utilizada para fazer o

processamento desses dados em Python.

5.1 Controle do difratémetro

A premissa principal pela qual se baseou o desenvolvimento do programa para futuramente suprir
o SPEC, foi a de que a ferramenta deveria ser bastante similar a ele, para que a transicao e a curva de
aprendizado entre uma ferramenta e outra fosse a mais suave possivel. Além disso, como o SPEC é um
programa que roda direto no terminal, seria interessante manter essa abordagem, e claro, a ferramenta deve
fazer os calculos de forma eficiente e consistente.

Foi tomado como base para o programa uma biblioteca em Python chamada zrayutilities (KRI-
EGNER; WINTERSBERGER; STANGL, 2013). Nela, além de uma grande quantidade de ferramentas ja
desenvolvidas para anéalise de dados de experimentos de XRD, existe uma rotina voltada para controle de
difratometros. Essa rotina faz o célculo dos ngulos necessarios para atingir um (hkl) através de um processo
de minimizacao. Entretanto, ainda nao existem muitas possibilidades como a de fazer restricao em pseudo-
angulos, sendo necessario implementar algo como os modos de operagdo descritos na segdo (3.4). Na fungao
de minimizagdo é possivel passar fungoes de restricdo, assim, as equagoes para os calculos de pseudo-angulos
desenvolvidas na se¢ao (3.2), foram utilizadas. A partir disso foi possivel desenvolver uma rotina que usa-se

os modos de operagao para fazer as restri¢goes de forma mais conveniente.

10Programa em que o cédigo fonte & suprimido.
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Com auxilio do zrayutilities e outras bibliotecas comuns em Python, como NumPy, SciPy, Argparse,
matplotlib, iniciou-se o desenvolvimento do programa.

A primeira abordagem foi desenvolver uma classe em Python, para que praticamente todas as func¢oes
relevantes fossem integradas, que pode ser entendido como o nitcleo do programa. Apés o nicleo estar
consistente, buscou-se por maneiras de fazer a integracdo com o terminal do Linux, e assim foi criada, com
auxilio da biblioteca Argparse, uma camada para fazer a comunicacdo com o usuério via terminal. Para
o desenvolvimento dessa camada houve a integracao do cédigo em Python com a linguagem Bash Shell
Scripting!!, para viabilizar o uso do programa no terminal. O programa desenvolvido recebeu o nome de
Diffractometer Angles Finder (DAF). Por fim, foram realizados testes comparando os resultados do DAF

com o SPEC, para checar a consisténcia do DAF.

5.2 Reconstrucao tridimensional do espago reciproco em Python

Similarmente ao desenvolvimento do DAF, a biblioteca zrayutilties também foi utilizada para a
reconstrucao tridimensional do espago reciproco. A partir da rotina ja implementada para detectores de
area, que converte angulos reais do difratémetro de 6 circulos para componentes do vetor Q, foi possivel
obter as matrizes de endereco necesséarias para fazer o plot. A matriz de intensidades foi obtida a partir
das fotos tiradas pelo detector durante o experimento que foram tratadas com o NumPy. Para realizar o
tratamento prévio de dados antes de realizar o plot, utilizou-se as bibliotecas NumPy e zrayutilities, enquanto

para realizar o plot foi usado as bibliotecas Plotly e Mayawi.

Hlinguagem de programagio base para sistemas Unix/Linux.
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6 Resultados e Discussao

6.1 Diffractometer Angles Finder (DAF)

DAF é um programa feito majoritariamente em Python que basicamente tem a fungdo de controlar
o difratometro de 6 circulos (4S+2D) presente na linha EMA. Ele é feito a parir bibliotecas em Python, a
principal sendo a zrayutilities, e que roda diretamente no terminal de sistemas Linux/Unix. Nele, além de
informacoes cristalogréficas e informacoes referentes ao experimento, pode ser passado determinada coorde-
nada no espago reciproco em func¢io de (hkl) que se queira sondar, e o calculo dos angulos do difratdmetro
necessarios para atingir essa reflexao serdo feitos. Além de possuir varias outras func¢oes, o DAF também é
compativel com scripts de usuarios “macros” que podem automatizar processos e otimizar o tempo de uso da
linha.

Apesar do cerne do DAF ser desenvolvido em Python, parte considerdvel do codigo é feito em Bash
Shell Scripting. Isso foi feito visando que o terminal do Linux fosse a interface de comunicagao entre o DAF e
o usudrio. Dessa forma qualquer integracdo com os sistemas do grupo SOL'? do Sirius, que em geral podem
ser chamadas via terminal, se torna trivial. A decisdo por uma interface de linha de comandos foi priorizada
em detrimento do grande volume e frequéncia de inputs que devem ser passados, o que poderia ser bastante
dispendioso em uma interface gréafica, embora exista a possibilidade do controle por uma ferramenta via
GUI™, que sera discutida mais adiante.

Nele é utilizado a abordagem de modos de operagao para controlar as restrigdes feitas aos graus de
liberdade do difratometro, descrito na se¢do (3.4). No momento, todos os calculos referentes ao espago Q
sao feitas através de uma funcao de minimizacao do SciPy, chamada através do zrayutilities. Para realizar a
minimizacdo calcula-se o vetor Q de referéncia para um (hkl) solicitado, e através de uma funcgao que leva
em consideracio todos os dngulos reais do difratometro, calcula-se o vetor Q, que deve ser minimizado em
relacdo ao vetor de referéncia previamente calculado.

Atualmente o DAF possui um total de 15 fung¢bes que podem ser chamadas pelo terminal, e funcionam
através de uma rotina interativa. Antes de realizar os calculos deve-se fornecer informacgoes sobre a amostra e
o experimento, bem como configurar o modo de operacado, os limites de rotacdo de motores disponiveis, setar
o valor em que os angulos restringidos devem ficar, calcular a matriz U, etc.. Apds todas as configuragoes
iniciais serem feitas, é possivel se mover pelo espago reciproco. J& existem algumas inovagoes, como é o caso
da fun¢do daf.rmap, que permite o usudrio, auxiliado por uma interface grafica do espago reciproco, clicar
em um (hkl) e calcular os angulos necessérios para alcanca-lo. As func¢oes do DAF que serdo discutidas em

maior detalhe, podem ser vistas a seguir

Sdaf.
daf.amv daf.cons daf.init daf.mode daf.reset daf.scan daf.status daf.wh
daf.bounds daf.expt daf.macro daf.mv daf.rmap daf.setup daf.ub

E importante ressaltar que no momento o DAF est4 rodando de maneira totalmente simulada, e
testes estao sendo feitos para entender o quao consistente sao seus resultados e operacao. Toda sua utilizagao
estd documentado para usuéarios através da opcao -h ou - -help que pode ser passada a todas as funcgoes,
auxiliando os usuérios a utiliza-las. A ajuda dispostas no terminal foi feita com a intencao de ser bastante

semelhante com as apresentadas pelos comandos nativos do shell'*, todas possuem uma estrutura bastante

1250ftware de Operacdo das Linhas de Luz.

13Do inglés Graphical User Interface.

14Programa que expde os servicos de um sistema operacional para um usuario ou outros programas. O nome shell ¢ devido
ao fato de ele ser a camada mais externa em volta do sistema operacional.
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similar, da forma:

Sdaf.expt -h
usage: daf.expt [-h] [-m samp] [-pabcaPy] [-1xyz] [-nxy z]
[-r xy z] [-s or] [-e en]

Describe the experiment inputs

optional arguments:

-h, --help show this help message and exit

-m samp, --Material samp
Sets the material that is going to be used in the
experiment

-pabcapPy, --Lattice_parameters abcapy
Sets lattice parameters, must be passed if defining a
new material

-ixyz, --IDir xy z
Sets the reflection paralel to the incident beam

-n Xy z, --NDir x y z
Sets the reflection perpendicular to the incident beam

-r Xy z, --RDir xy z
Sets the reference vector

-s or, --Sampleor or Sets the sample orientation at Phi axis

-e en, --Energy en Sets the energy of the experiment (KeV), wavelength
can also be given (A)

daf.expt --Material Si --Energy 8000
daf.expt -m Si -e 8000

daf.expt -s x+

daf.expt -11 00 -n0 10

6.1.1 Definicao dos parametros basicos

Para iniciar o DAF deve-se ir em um diretério em que se queira que os dados gerados fiquem,
e utilizar a funcao daf.init, que tem simplesmente a fungdo de gerar os arquivos necessarios para usar o
DAF no diretorio atual do usuério, no momento a tnica opc¢ao disponivel é a -6¢ que faz referéncia a um

difratéometro de 6-circulos.

Sdaf.init -6c¢c

Para definir a energia, amostra, sistemas de referéncia da amostra, utiliza-se a funcdo daf.ezpt. Nela
podemos usar uma amostra predefinida no sistema, ou ainda definir uma nova amostra a partir dos pardmetros

de rede. Os comandos necessarios sao da forma:

Sdaf.expt -e 1 -mS1 -1100 -n0 01

Sdaf.expt -e 8000 -m meu_S1 -p 5.431 5.431 5.431 90 90 90

em que no primeiro caso a energia foi definida através do comprimento de onda de 1A, foi escolhido o
material predefinido silicio, sendo informado que a diregao [100] esta ao longo do feixe e a diregao [001] esta
perpendicular ao feixe. Ja no segundo caso, definiu-se um novo material “meu_Si” a partir do parametros

de rede, e a energia foi definida em 8000 eV.
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O modo de operagao, isto é, as restri¢oes nos graus extras de liberdade, sdo feitos com base na tabela
(1), na qual deve ser seguido as recomendagcoOes descritas na segdo (3.4) para passar ao programa. O modo é
passado através do comando daf.mode, como segue:

Sdaf.mode 215

assim foi selecionado o modo 215, que significa nu fixo, alfa = beta, e eta = %.

A seguir ¢é interessante definir os limites angulares pelos quais os motores podem se mover, ja que
cada experimento pode ter limites diferentes, devido, por exemplo, a ambientes de amostra que podem
limitar bastante o range dos motores. Existe um limite padrao pré-definido baseado nos limites basicos do

difratometro, mostrados a seguir pela funcao daf.bounds com a opcao -l.

$daf.bounds -1

Mu = [-20 , 160.0]
Eta = [-20.0, 160.0]
chi =  [-5.0, 95.0]

Phi =  [- 4@@ 0, 400.0]
Nu = [-20.0, 160.0]
Del =  [-20.0, 160.0]

Que podem ser manipulados através da mesma funcao daf.bounds, da forma:

Sdaf.bounds -d 45 135 -c -50 50 -1

Mu =  [-20.0, 160.0]
Eta =  [-20.0, 160.0]
chi = [-50.0, 50.0]
Phi =  [-400.0, 400.0]
Nu = [-20.0, 160.0]
Del =  [45.0, 135.0]

em que o eixo do delta foi restringido de 45 a 135 graus e o circulo do chi de —50 a 50 graus.

Para fixar os angulos ou pseudo-angulos restringidos através do modo de operagdo em algum angulo
especifico, utiliza-se a fun¢do daf.cons. Por padrdo o DAF fixa o angulo ou pseudo-angulo restringido pelo
modo de operagao em 0 graus, porém, muitas vezes é de interesse fixar esses angulos em valores diferente de

0, que pode ser feito da seguinte maneira:
Sdaf.cons -a 3 -n 30 -q 90 -1

Alpha
Beta
Psi
Qaz
Naz
Omega

GGgG}GW
[cNoRENoNoNO)
(o]

Mu
Eta
Chi
Phi
Nu
Del

[ocNNoNoNoNO]
[cNoNoNO]
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no qual alfa foi fixado em 3°, nu em 30°, e qaz em 90°, enquanto os demais permaneceram no padrao, i.e, 0°.
E importante ressaltar que as restricdes impostas por essa funcio sé serdo aplicadas se o modo de operacio
atual, de fato, restringir o angulo/pseudo-angulo em questao.

Por fim pode ser 1util calcular a matriz de orientacao U, visto que € invidvel orientar os vetores
da rede do cristal com o sistema de coordenadas do laboratério no momento da montagem da amostra no
difratometro. Lembrando que as larguras de picos de difracao de monocristais podem chegar a milésimos de
grau. E esse o nivel de alinhamento/precisio necessaria na movimentagdo. Portanto, calcular a matriz U
antes de comecar a movimentacao do difratdmetro é indispensavel, caso contrario os erros de desalinhamento
podem ser muito grandes. A matriz de orientacdo é calculado pelo DAF através da implementagdo dos
célculos mostrados na secdo (3.3), podendo ser calculada através de duas ou trés reflexdes pela funcdo daf.ub,

como mostrado na sequéncia:

Sdaf.ub -r1 1 0 0 0 5.28232 0 2 0 10.5647
Sdaf.ub -r2 0 1 0 0 5.28232 2 92 0 10.5647
Sdaf.ub -c2
Sdaf.ub -s
0.99939 -0.03488 0.00122
U = 0.03490 0.99878 -0.03488
0.00000 0.03490 0.99939
1.15620 -0.04035 0.00141
UB = 0.04037 1.15549 -0.04035
0.00000 0.04038 1.15620

Nesse caso utilizou-se a abordagem de calcular para duas reflexoes. O resultado foi obtido, para o
silicio, a partir das reflexdes (100) e (010) e seus respectivos dngulos. Vemos que a matriz U esta informando
que o cristal estd levemente desalinhado, pois existem componentes fora da diagonal principal, e caso nao

houvesse desalinhamento, resultaria na matriz identidade. Calculando agora para 3 reflexdes temos:

Sdaf.ub -r1 1 0 0 0 5.28232 0 2 0 10.5647
Sdaf.ub -r2 0 1 0 @ 5.28232 2 92 0 10.5647
Sdaf.ub -r3 0 @ 1 0@ 5.28232 92 92 0 10.5647
Sdaf.ub -c3
Sdaf.ub -s -p
0.99939 -0.03488 0.00122
u = 0.03490 0.99878 -0.03488
0.00000 0.03490 0.99939
1.15620 -0.04035 0.00141
uB = 0.04037 1.15550 -0.04035
0.00000 0.04038 1.15620
a = 5.43101
b = 5.43101
« = 5.43101
a = 90.00000
B = 90.00003
Y = 90.00000

59



Para esse caso as reflexdes (100), (010), (001) e e seus respectivos angulos foram utilizadas. Ve-se
que os resultados sao idénticos aos obtidos a partir de duas reflexdes, com o diferencial de que foi possivel
calcular também os parametros de rede do silicio, que se assemelham bastante comparado com a literatura.
Caso se tenha a intencao de definir um novo material a partir do modo daf.expt, pode-se usar esse calculo
para obter os pardmetros de rede, que ja esta integrado a defini¢do do material pela funcdo daf.expt, sendo
necesséario apenas a definicao de um nome para o material.

Apos todas essas configuracdes pode ser de interesse do usuario ter uma visdo geral de como o
experimento estd definido no DAF, e com isso verificar se algum erro de definicdo ou mesmo de digitacao
ocorreu. Para isso basta usar a funcao daf.status com o parametro -a, para que todas as informacoes definidas

até aqui possam ser vistas. A saida desse comando resulta em:

Sdaf.status -a

MODE nu_fix -- n==5&/2 mu_fix --
20520 30.0 -- -- 0.0 --
Material WavelLength (A) Energy (keV) Incidence Dir Normal Dir  Reference Dir
Si 1.00000 12.39842 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0
0.99939 -0.03488 0.00122
U = 0.03490 0.99878 -0.03488
0.00000 0.03490 0.99939
1.15620 -0.04035 0.00141
uB = 0.04037 1.15549 -0.04035
0.00000 0.04038 1.15620
Mu = [-20.0, 160.0]
Eta = [-20.0, 160.0]
chi = [-56.0, 50.0]
Phi = [-400.0, 400.0]
Nu = [-20.0, 160.0]
Del = [45.8, 135.0]

6.1.2 Movimentagao

Com todas as configuragoes iniciais do experimento definidas, pode-se comegar a movimentagao do
difratometro a fim de sondar regides de interesse do espaco reciproco. Sempre que um novo experimento é
iniciado no DAF ele parte com todos os motores em 0 graus. O programa possui basicamente trés formas para
movimentar os circulos do difratometro, sendo elas performadas pelas funcoes daf.amv, daf.mv, daf.rmap.

O jeito mais simples pelo qual se pode mover o difratdbmetro é mover diretamente os angulos, sem
estabelecer ou satisfazer qualquer tipo de relagdo, ou seja, simplesmente solicitar que determinado angulo
real do difratometro gire um nimero de graus. Isso é feito através da funcao daf.amv que permite navegar
no espaco reciproco de uma maneira mais livre. E comum utilizar nesse caso o comando daf.wh, que tem a
funcao de dizer como esta a orientacao atual do experimento no espaco reciproco, informando também como

os angulos e pseudo-angulos se encontram no momento. Um exemplo desses comandos é mostrado a seguir:
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Sdaf.amv -d 30 -e 15

Sdaf.wh

HKL now = 1.81398 0.00000 0.00000
Alpha = 0.00000
Beta = -0.00000
Psi = 90.00000
Tau = 90.00000
Qaz = 90.00000
Naz = -0.00000
Omega = 0.00000
Mu = 0.00000
Eta = 15.00000
Chi = 0.00000
Phi = 0.00000
Nu = 0.00000
Del = 30.00000

Nesse caso foi solicitado que o eixo do delta fosse para a posicao 30° e o eixo do eta fosse para a
posicao 15°, atingindo a posi¢ao em termos de (hkl) para o silicio da forma h = 1.81398, k£ = 0, e [ = 0, como
visto na saida do comando. Essa forma de movimentacao é mais rudimentar comparada com as demais, mas
possui sua utilidade dependendo do que se queira fazer.

A outra maneira de mover o difratémetro é a mais conhecida. A abordagem consiste em mover o
difratometro fornecendo como input diretamente a posi¢do do espago reciproco que se queira sondar, assim
podemos ir diretamente para uma posicao em (hkl), levando em consideracado, é claro, o modo de operagao

selecionado. A fungdo responsavel por performar essa movimentacao é a daf.mv, que pode ser vista a seguir:

Sdaf.mv 1 1 1 -v

MODE nu_fix a=2p n==56/2 -- -- Error
21500 0.00000 -- -- -- -- 1.85e-07
H K L Ref vector Energy (kev) WL (A) Sample

1.00000 1.00000 1.00000 0.0 0.0 1.0 12.39842 1.00000 Si
Qx Qy Qz [o]] Exp 20 Dhk1 FHKL (Base)
1.15690 1.15690 1.15690 2.00381 18.35093 3.13561 60.43181
Alpha Beta Psi Tau Qaz Naz Omega
5.28232 5.28233 90.00000 54.73563 90.00000 34.91732 0.00000
Del Eta Cchi Phi Nu Mu --
18.35093 9.17547 35.26439 44.99999 0.00000 -0.00000 --

Na primeira linha vemos o modo de opera¢do em que o célculo foi feito, nesse caso, 21500 além do
valor do erro associado a minimizacdo de 1.85-10~7. Na segunda e terceira linha, além de algumas informacdes
do experimento, vemos o (hkl) calculado. Por fim, nas ultimas 2 linhas estdo os angulo e pseudo-angulos
calculados pela minimizacgao, e fica claro que o modo foi satisfeito adequadamente, ja que alfa = beta, nu =

__ delta
0, e eta = 5=

, € basicamente para atingirmos o (hkl) = (111), satisfazendo as condic¢oes impostas, basta
mover o angulos reais do difratometros para as posi¢des calculadas.
A dltima maneira pela qual se pode mover o difratdmetro é uma inovagdo do DAF. Com o auxilio de

uma interface gréafica de um plano do espaco reciproco, pode-se clicar em um (hkl) que se queira investigar, e
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o DAF calculara os angulos necessarios para atingir o (hkl) solicitado. Porém, o diferencial dessa ferramenta
reside na possibilidade de visualizar como o espaco reciproco esta disposto, além da informagao de quais
reflexdes podem ser atingidas com as configuracoes atuais, ja que dependendo da energia em que se realiza
o experimento, as reflexoes acessiveis podem variar, jA que o vetor Q depende da energia. N&o somente
a energia pode limitar o experimento, dependendo da maneira como nu e delta estao restringidos, o valor
minimo e maximo do 26 alcangado, que é definido por esses dois dngulos, pode variar, culminando novamente
na restricdo das regides acessiveis. A funcdo responsavel por isso é daf.rmap, e a interface grafica gerado é

mostrada na figura (6.1).

Figura 6.1: Interface grafica gerado pelo comando daf.rmap. Nela, pode-se clicar em qualquer um dos hkl
disponiveis para realizar o calculo dos angulos necessarios para atingir aquela reflexao.

@ out of plane (A1)
IS

Qinplane (A-1)

Fonte: O autor.

Nessa imagem que representa um plano no espago reciproco, delimitado pelos vetores (0,1,0) no
eixo das abscissas e (0,0,1) no eixo das ordenadas, podemos ver a disposicido das reflexdes do silicio que
estao disponiveis nessa fatia do espago, sdo poucas devido a grande simetria da amostra, levando a diversas

extincoes!®.

Ao se clicar em uma das reflexdes como a reflexdo mostrada (004), sera calculado os angulos
necessarios para alcangé-la, e a fungao daf. wh serd chamada para mostrar no terminal o resultado do calculo
como visto na figura (6.2). O célculo realizado pelo daf.rmap, também segue o modo de operacao definido,
nesse caso alfa = beta, nu = 0, e eta = %

As reflexbes que estdo na regido sombreada sdo inacessiveis, pois para esse caso, delta é o unico
angulo de detector livre, j& que nu esta restringido em 0°, e delta teve seus limites restringidos a [—20°,120°].
Dessa forma o alcance méximo de 20 também fica restringido até 120°, isso pode ocorrer na pratica pela
restricdo imposta ao difratometro devido ao ambiente de amostra. A saida para acessar as reflexoes na
zona vermelha seria aumentar a energia do feixe incidente de raios X, resultando na compressao do espago

reciproco. O exemplo da figura (6.1) foi feito na energia de 8keV, em comparagio, a figura (6.3) foi gerada

150 fator de estrutura se anula devido a simetria, de forma que a intensidade referente aquela reflexio também se anula.
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mantendo-se todos os parametros constantes, exceto a energia que foi aumentada para 12keV. Outras opgoes
do daf.rmap é a capacidade de definir planos do espago em qualquer direcao, passando como parametro dois

vetores linearmente independentes.

Figura 6.2: Calculo gerado ao clicar em um hkl na interface gréfica da funcdo daf.rmap.

Sdaf.rmap -s 200 e =

Sample = Si

HKL now =  0.00000 -0.00000 4.00000 '

Alpha =  34.80047 ’

Beta = 34.80047 o

Psi =  0.00000 - . | = .

Tau = 0.00000

Qaz = 90.00000

Naz = -90.00000 g

Omega = -0.00000 s

Mu = 0.00000 . ° °

Eta = 34.80047

chi = 90.00000 .

Phi = 45.00001

Nu = 0.00000 .

Del = 69.60094 L - = 5 ; ; T ;
Qinplane (A™)

Fonte: O autor.

Figura 6.3: Interface grafica da funcao daf.rmap gerada para energia em 12 keV.

Q out of plane (A1)

1o s 0 5 10
Qinplane (A1)

Fonte: O autor.

Além dessas opgoes de movimentacao, existe uma outra voltada para de fato realizar um experimento,
na qual se varre determinada regiao do espacgo reciproco. Nela podemos fornecer um valor inicial e final de

hkl pelo qual se quer mover, selecionando também o numero de pontos que se quer nesse procedimento. A

16

funcdo para realizar essa tarefa se chama daf.scan, e possui como saida um arquivo csv-® com os dados de

16Do inglés comma separated values, refere-se a um arquivo em que as colunas de uma tabela sdo separadas por virgula.
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angulos e pseudo-angulos calculados para cada uma das reflexdes contidas entre esses pontos.

$daf.scan 0.9 6.9 0.9 1.1 1.1 1.1 10 -n meu_scan -v
2007 | | | 11/11 [00:01<00:00, 10.71it/s]

Mu Eta Chi Phi Nu Del ... tau psi beta omega HKL Calc Error
0 -0.0000 8.2512 35.2644 45.0000 0.0000 16.5023 ... 54.7356 90.0000 4.7528 -0.0000 [0.9000, 0.9000, 0.9000] 2.36e-08
1 -0.0000 8.4358 35.2644 45.0000 0.0000 16.8717 ... 54.7356 90.0000 4.8587 -0.0000 [0.9200, 0.9200, 0.9200] 7.88e-07
2 -0.0000 8.6206 35.2644 45.0000 0.0000 17.2412 ... 54.7356 90.0000 4.9646 0.0000 [0.9400, 0.9400, 0.9400] 3.65e-07
3 -0.0000 8.8055 35.2644 45.0000 0.0000 17.6109 ... 54.7356 90.0000 5.0705 -0.0000 [0.9600, 0.9600, 0.9600] 1.93e-07
4 -0.0000 8.9904 35.2644 45.0000 0.0000 17.9808 ... 54.7356 90.0000 5.1764 -0.0000 [0.9800, 0.9800, 0.9800] 2.44e-08
5 -0.0000 9.1755 35.2644 45.0000 0.0000 18.3509 ... 54.7356 90.0000 5.2823 -0.0000 [1.0000, 1.0000, 1.0000] 1.21e-08
6 -0.0000 9.3606 35.2644 45.0000 0.0000 18.7212 ... 54.7356 90.0000 5.3883 0.0000 [1.0200, 1.0200, 1.0200] 4.28e-08
7 -0.0000 9.5459 35.2644 45.0000 0.0000 19.0917 ... 54.7356 90.0000 5.4943 -0.0000 [1.0400, 1.0400, 1.0400] 8.27e-08
8 -0.0000 9.7312 35.2644 45.0000 0.0000 19.4624 ... 54.7356 90.0000 5.6002 0.0000 [1.0600, 1.0600, 1.0600] 2.48e-07
9 -0.0000 9.9166 35.2644 45.0000 0.0000 19.8333 ... 54.7356 90.0000 5.7063 -0.0000 [1.0800, 1.0800, 1.0800] 1.27e-07
10 -0.0000 10.1022 35.2644 45.0000 0.0000 20.2044 ... 54.7356 90.0000 5.8123 ©0.0000 [1.1000, 1.1000, 1.1000] 9.34e-07

Como se poder ver, o scan foi feito partindo do hkl (0.9,0.9,0.9) indo até o hkl (1.1,1.1,1.1) com
10 passos. Foi escolhido um nimero muito pequeno de passos ja que o intuito é apenas ilustrar a saida da
fun¢do, em um experimento real, em geral, sio feitos alguns scans menores com em torno de 100 passos, para
fins de alinhamento, e um scan principal que possui por volta de 1000 pontos. A fung¢do gerou um arquivo
csv chamado de “meu_scan”, e também foi usado a opgao -v para que a saida fosse mostrada no terminal.
Na saida do comando, vemos que se trata de varias linhas com a informagdo dos dngulos e pseudo-angulos
referentes a cada uma das reflexoes calculadas, além do erro associado a cada processo de minimizacao. Existe
uma verificacao para que, caso alguma minimizacao falhe em qualquer ponto do scan, seja levantado um erro,
e o scan é encerrado abruptamente, dessa forma evitando problemas quando o difratometro for fazer de fato

essa varredura.

6.1.3 Utilitarios

O DAF apresenta alguns comandos mais voltados para o gerenciamento geral das rotinas, que podem
facilitar bastante a vida dos usuérios. Seja a possibilidade de restaurar todos as defini¢des para o padrao, ou
a capacidade salvar configurages que o usuério possa ter achado interessante em ambientes, ou ainda auto-
matizar processos com macros, (ue permitem que uma rotina corriqueira seja automatizada e posteriormente
reproduzida quantas vezes se queira, facilitando e otimizando o uso da linha.

Para redefinir todas as defini¢oes para o padrao basta usar o seguinte comando:

Sdaf.reset -a

Caso o usudrio tenha encontrado alguma configuracgao de seu interesse, de modo, energia, motores etc.
ele podera salva-la como um ambiente. Possuindo a opcao de criar, excluir e mudar de ambiente, facilitando

bastante o processo. O comando para isso se chama daf.setup, e pode ser usado das seguintes formas:

$daf.setup -s env_2.0

Passando o parametro -s e o nome do ambiente, nesse caso “env_2.0”, um novo ambiente com esse
nome serd criado, caso nao seja fornecido um nome, passando somente o parametro, a informacao seré salva
no ambiente atual. Pode-se também mover-se livremente entre os ambientes predefinidos ou exclui-los caso
se queira. O comando para listar os ambientes disponiveis também ira informar em qual ambiente o usuario

estd atualmente, da seguinte maneira:
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$daf.setup -1

» default
env_1.0
env_2.0

O ultimo utilitario disponivel é voltado para a criacdo de macros. A partir de seu uso é criado um
arquivo executavel que iré repetir todos os comandos que o usuério utilizou em quanto o comando estava ativo.
Basicamente o usudario tem que utilizar o comando informando o DAF para iniciar a gravar os comandos, e
continuar usando o DAF normalmente, visando criar um script, ao final basta informar o DAF para parar
de gravar. Com isso é gerado um arquivo executavel que pode ser chamado através do DAF, ou mesmo
executado diretamente no terminal, um exemplo é mostrado a seguir:
$daf.macro -1 -n meu_macro
Secho 'Executar alguns comandos aqui’

Executar alguns comandos aqui

Sdaf.macro -s
Sdaf.macro -e meu_macro

A func¢ado de executar macros é uma caracteristica bastante relevante, que facilita muito processos
repetitivos, e assim a funcao daf.macro foi criada para tentar suprir essa demanda. Porém, apesar da facilidade
de uso proporcionada por essa ferramenta, em geral, é de grande interesse o uso de logicas de programagcao
dentro de uma macro, como iteradores e condicionais. A funcdo daf.macro nao disponibiliza essa opcao e s6
repetird o que o usuéario fez. Entretanto, como o DAF é um programa que roda em terminal, pode-se usar a

programacao em shell, que é bastante robusta, para fazer logicas e interagir com as fungées do DAF.

6.1.4 Validagao dos calculos do DAF

Para se ter ideia da consisténcia dos calculos feitos pelo DAF, foi utilizado o software SPEC como
base para comparagoes. Para isso, foram feitas macros tanto para o SPEC como para o DAF. Nelas, foram
calculados os hkls variando de (—1 — 1 — 1) até (111), excluindo apenas o (000), para trés vetores de
referéncia, sendo eles (100), (010), (001). Isso foi feito para 3 modos de operacdo, 21500 (nu = 0°, alfa=beta,
eta= %), 20230 (nu = 0°, mu= 0°, chi = 90°), e 31500 (qaz = 0°, alfa=beta, eta= %) gerando um total
de 78 casos por modo, e ao todo 234 casos. Esse método foi aplicado para célula unitaria cubica, hexagonal,
trigonal, tetragonal, ortorrombica, monoclinica e triclinica.

Os resultados do primeiro teste foram dispostos no grafico da figura (6.4). Podemos ver que o DAF
conseguiu atingir muito menos reflexdes do que o SPEC, porém, foram impostos a ambos os programas as se-
guintes restri¢oes nos circulos do difratometro: delta = [-10°,160°], eta = [-10°,160°], chi = [-10°,100°],
phi = [—400°,400°], nu = [-10°,160°], mu = [-10°,160°] . O DAF faz suas contas sempre levando em con-
sideragdo esses limites, o SPEC ndo. A maneira que o SPEC opera consiste em primeiro fazer as contas sem
restri¢oes de angulos, e quando de fato for solicitado que o difratometro mova para aquele hkl, ele verificara
se os limites permitem essa movimentagao. Para que a comparacao seja justa, deve-se considerar apenas os
casos em que o SPEC calculou dentro dos limites impostos, essa discussdo serd feita para um caso especifico
nessa secao.

Apos os obtengao dos primeiros resultados, a quantidade baixa de acertos do DAF chamou a atencao,
mesmo levando em conta o fato de o SPEC fazer o calculo sem levar os limites em consideragao. Investigando-
se as reflexbes que ndo foram bem sucedidas, percebeu-se que propondo uma colecdo de pontos de partida
para auxiliar no processo de minimizacao fazia com que o DAF encontrasse o hkl solicitado com sucesso.

Isso possivelmente ocorre devido a minimizagao ficar “presa” em um minimo local, e quando parte de um
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ponto diferente, ela consegue encontrar a verdadeira solu¢do. Apds algumas alteragdes na logica utilizada
nos valores iniciais da minimizacao, ao rodar a macro novamente obteve-se os resultados mostrados na figura
(6.5).

Figura 6.4: Grafico do primeiro resultado das macros comparando para todos os tipos de células unitarias os
acertos entre DAF e SPEC.
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Fonte: O autor.

Figura 6.5: Gréafico feito apos a alteracao na logica de chutes iniciais do DAF, comparando os resultados com
o SPEC para todas os tipos de células unitarias, nele é possivel ver que um ntimero muito maior de reflexdes
foi encontrado pelo DAF.
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Fonte: O autor.

Vemos que essa abordagem foi bastante efetiva, e em alguns casos o ntimero de hkls encontrados
mais do que dobrou. Além de melhorar consideravelmente a consisténcia do DAF, essa abordagem foi capaz
de aumentar também a performance, ja que ao encontrar mais reflexdes, menos minimizacoes eram feitas até
esgotar o limite de iteragoes, o que deixava o tempo para rodar a macro extremamente grande. Nao somente

isso, mas a légica anterior para os valores iniciais era bastante ineficiente, e gerava um gigantesco ntmero de
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iteragoes. Com essa nova implementacao o tempo gasto em cada minimizagdo reduziu-se consideravelmente,
enquanto a consisténcia foi significativamente melhorada, como mostra o grafico (6.5).

Com relacao as contas do SPEC nao levarem em consideracao os limites impostos, um caso em
particular seréd estudado mais a fundo. Para isso, foi selecionado uma amostra de célula cibica e o modo 21500

(nu = 0°, alfa=beta, eta = %)

foi levado em consideracdo. Dessa forma, esses dados sdo um subconjunto
dos dados da primeira coluna da figura (6.5). Sob essas condigbes o0 SPEC conseguiu encontrar 92, 308% das
reflexdes, das quais apenas 38, 462% estavam dentro dos limites previamente impostos. Enquanto isso o DAF,
sem as correcoes de valores iniciais, foi capaz de encontrar apenas 33, 333%, porém todas estavam dentro dos
limites. Contudo, apds a alteragdo na logica de chutes iniciais, o DAF foi capaz de encontrar 65,385% das

reflexdes, e todas estavam dentro do limite. Esses dados estdo sumarizados no grafico da figura (6.6).

Figura 6.6: Comparacgao entre os acertos para o modo 215 de uma célula unitaria ctubica entre DAF e SPEC,
evidenciando a proporcao de reflexdes encontradas que estavam dentro das restricdes impostas.

1.0
0.92308 = Acertos dentro dos limites
mmm Acertos fora dos limites

0.8

o
o

Razdo de acertos
o
S

0.2

0.0 . .
DAF DAF APOS CORRECOES

Fonte: O autor.

Portanto, avaliando os dados dispostos na figura (6.6), o DAF se sai melhor do que o SPEC sob
esse viés. Indo além, pode-se concluir que existem reflexoes que poderiam ser alcancadas dentro dos limites
impostos, porém, como o SPEC faz o calculo sem levar em consideragoes as restri¢cdes, isso nao acontece. No
contexto da linha EMA, é esperado que ambientes de amostra limitem a movimentacao dos eixos de amostra

do difratometro. Nesses casos, 0 DAF ja esta pronto para isso.

6.2 Reconstrucgao tridimensional do espacgo reciproco

Um dos grandes desafios ao se lidar com esse tipo de plot reside no fato de que os dados estdo no
formato de matrizes 3D, sendo 3 matrizes de enderego em fungao das componentes do vetor Q, e uma de
intensidade obtida a partir das fotos tiradas pelo detector. Para plotar o grafico mostrado anteriormente na
figura (4.5), foi utilizado a funcdo isosurface do MATLAB, que consegue lidar bem com esse tipo de dados,
gerando gréaficos coerentes. Porém, em Python, as bibliotecas mais corriqueiras para visualiza¢iao de dados,
como o matplotlib, ndo conseguem lidar com esse tipo de dados. As poucas bibliotecas encontradas capazes
de manejar dados de matrizes 3D, como Plotly e Mayavi, possuem dificuldades para lidar com dados nao
igualmente espacados, que é o caso em questao, ja que o grid igualmente espacado é perdido pela conversao

de angulos para componentes de Q.
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A primeira abordagem para plotar um grafico similar ao obtido em MATLAB se resumiu em simples-
mente utilizar as 4 matrizes 3D sem nenhuma alteragao, de forma idéntica ao utilizado na funcao isosurface
do MATLAB. Entretanto as bibliotecas Plotly e Mayavi tiveram dificuldades em processar os dados néo
igualmente espacados, gerando resultados sem coeréncia no caso da Mayavi como visto na figura (6.7), em
que o resultado é praticamente um plano no espaco, com a intensidade comprimida nele. No caso do Plotly,

nao foi possivel nem mesmo gerar um grafico com dados, sendo gerado apenas uma imagem com oS €ixos.

Figura 6.7: Grafico gerado pelo Mayavi utilizando as matrizes de endereco Q,, Q,, Q., e a matriz de
intensidade, sem nenhum tipo de tratamento.

Fonte: O autor.

Em seguida, utilizou-se a abordagem de interpolar as matrizes de endereco Q., Q,, Q. em um grid
igualmente espacado. Para isso foi utilizada a funcio mgrid da biblioteca NumPy. E uma interpolacio
bastante simples, feita basicamente por utilizar os valores minimos e maximos de cada uma das matrizes de
endereco, fazendo uma interpolacdo linear entre esses limites. A partir desse processo foram obtidas matrizes
3D de mesmo tamanho, porém agora com dados igualmente espacados. O resultado do plot realizado com

as matrizes igualmente espacadas e a intensidade é mostrado na figura (6.8) e (6.9), realizadas pelo Mayavi
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e Plotly, respectivamente.

Figura 6.8: Grafico 3D gerado pelo Mayavi com grid igualmente espacado nas matrizes de endereco.

Fonte: O autor.

Apesar de agora haver um volume visivel sendo delimitado, a intensidade parece estar comprimida,
e como apenas uma porc¢ao desse espaco foi de fato sondada, a intensidade ndo deveria estar distribuida por
todo ele, e sim em apenas uma porg¢do. Com auxilio da biblioteca xrayutilities, usando a fun¢do Gridder3D,
outro tratamento foi feito. Os inputs da fun¢do sdo as matrizes de intensidade Q,, Q,, Q:, e a matriz de
intensidade, assim essa funcao coloca todos os dados em um grid igualmente espacado, além de interpolar
a intensidade levando em conta as matrizes de endereco. Entretanto, como output obtemos matrizes 1D
para Q,, Qy, e Q. e uma matriz 3D para a intensidade, isso ¢ um problema, ja que para plotar o grafico é
necessario que as 4 matrizes possuam 3 dimensoes. Esse problema foi resolvido aplicando a fungao mgrid do
NumPy nos valores de (0, Qy, e @, obtidos a partir do Gridder3D, de forma anéloga a feita anteriormente.
Portanto, agora haviam novamente 4 matrizes 3D, sendo Q., Qy, e Q. obtidas a partir da funcao mgrid do
NumPy, e a intensidade obtida a partir do Gridder3D, o grafico gerado apds esse tratamento é mostrado na
figura (6.10).
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Figura 6.9: Grafico 3D gerado pelo Plotly com grid igualmente espacado nas matrizes de endereco

84

(ymzo

Fonte: O autor.

Agora o volume varrido estd de acordo com o esperado pelo experimento, e os picos de intensidades
estao bem visiveis ao longo desse espaco. Para obter um grafico mais facil de interpretar parecido com o
mostrado na figura (4.5), utiliza-se a abordagem de suprimir valores de menor intensidade, possibilitando
uma visdo menos poluida, para o que realmente importa, isto é, os picos de intensidade. As figuras (6.11),
(6.12) mostram as imagens obtidas a partir dessa abordagem, nelas é possivel ver que, os graficos obtidos com
o Plotly consegue gerar graficos com a estrutura interna com maior contraste, em comparagao ao Mayavi. Ja
em comparagao ao grafico gerado pelo MATLAB da figura (6.13), é evidente que a qualidade das imagens
geradas pelas bibliotecas em Python é menor, gerando imagens menos nitidas. Mesmo com tentativas de
ajustar parametros para melhorar a visualizagao, ndo foi encontrado uma maneira que impactasse de forma
relevante a qualidade da imagem.

Um dos motivos pelo qual se deve a diferenca de qualidade entre o grafico gerado em Python pelo
Plotly e o grafico gerado em MATLAB, certamente é devido ao fato de ter sido necessério reduzir os dados
antes de serem plotados pelo Plotly. Os dados possuiam a forma original de 95 x456 x 501 sendo reduzidos para
32 x 160 x 160, significando uma redug¢io de aproximadamente 26,5 vezes do nimero de dados comparado
ao tamanho original. Isso foi necessario devido ao grande consumo de memoria RAM ao realizar o plot,
possivelmente por nao estar otimizado, entretanto a razao para esse consumo exacerbado nao esta clara.

O computador utilizado para realizar o plot possui 8Gb de RAM, e um ntmero maior de dados do que
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Figura 6.10: Vista em perspectiva do grafico da 3D-RSM gerado pelo Plotly, com grid igualmente espacado
nas matrizes de enderego, e com a matriz de intensidade obtida a partir do Gridder3D.
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Fonte: O autor.

32 x 160 x 160 culminava em seu travamento. Outro problema observado é que todo processamento tanto
para o Mayavi quanto para o Plotly era feito pela CPU!7, ignorando totalmente a GPU'® que ndo era
utilizada. Logo, para grande conjuntos dados, que podem chegar facilmente em 1000 x 456 x 501, isto &, 1000
fotos de um detector de 456 x 501 pixels, pode ser bastante laborioso.

Com o intuito de discutir sobre o 3D-RSM, houve uma interacao entre o nosso grupo e o grupo
de computagao cientifica (GCC), que por sua vez sugeriu usar o NVIDIA Index. O GCC esté4 trabalhando
no momento com essa ferramenta bastante promissora para lidar com o problema de processamento. A
ferramenta utiliza a abordagem de realizar o processamento utilizando varias GPUs em paralelo. Isso em
conjunto ao grande poder computacional dos servidores do CNPEM, pode oferecer uma grande performance,
possibilitando até mesmo o plot em tempo real durante o experimento. Segundo o GCC, a ferramenta seria
disponibilizada em Python, podendo ser importada como qualquer outra biblioteca convencional, evitando
qualquer problema de integracdo. Um gréfico gerado através no NVIDIA IndeX, ainda em fase de desenvol-

vimento/integragdo, para o mesmo cristal de LAO pode ser visto na figura (6.14).

1"Do inglés Central Processing Unit, faz referéncia ao processador do computador.
18Do inglés Graphics Processing Unit, faz referéncia a placa de video do computador.
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Figura 6.11: Gréfico da 3D-RSM gerado pelo Mayavi com grid igualmente espacado nas matrizes de endereco,
e com a matriz de intensidade obtida a partir do Gridder8D, usando filtro para suprimir intensidades baixas.

Fonte: O autor.

Figura 6.12: Grafico da 3D-RSM gerado pelo Plotly com grid igualmente espagado nas matrizes de endereco,
e com a matriz de intensidade obtida a partir do Gridder3D, usando filtro para suprimir intensidades baixas.
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Fonte: O autor.
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Figura 6.13: Grafico da 3D-RSM gerado em MATLAB com filtro para suprimir intensidades baixas.
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Fonte: O autor.

Figura 6.14: Gréfico da 3D-RSM gerado pelo NVIDIA IndeX.
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Fonte: GCC.
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7 Conclusao

Sobre a parte de controle, a comparacao natural com a solucao que vinha sendo utilizada no LNLS
para esse fim (SPEC (SPEC, 1998)) mostrou resultados promissores. Com a abordagem de realizar os
célculos via minimizacao, a implementacao dos modos se torna bastante trivial. Basicamente, ela necessita
que funcoes de restricao sejam passadas para rotina de minimizagao do zrayutilities. Portanto, basta que se
tenha uma expressao calculada a partir dos angulos do difratometro para que se defina uma restricdo a um
grau de liberdade. Em comparagao, a tradicional solugao analitica usada anteriormente deve ser pensada
para cada possivel modo de operacao, resolvendo um sistema de equacoes nada trivial. Aqui foi possivel,
por exemplo, viabilizar o modo 20520 via DAF que nao estd implementado no SPEC. Assim, tal abordagem
permitiu que os célculos de hkl levassem em consideragao a limitagao nos alcances angulares do difratometro.
Isso é interessante no contexto de uma linha de luz, ja que os ajustes desses limites sdo frequentes entre
experimentos distintos. Além disso, o desenvolvimento interno desse codigo trouxe independéncia de solugoes
comerciais usadas atualmente. Um exemplo foi aliar o input de comandos via terminal com uma interface
grafica (“rmap”). O input de comandos pelo terminal facilita scans angulares repetitivos e permite rodar
“macros”, i.e., arquivos com esses comandos ji escritos. Por outro lado, a interface grafica da suporte ao
usuério (experiente ou ndo) durante a sondagem do espago reciproco.

Sobre o tratamento de dados, o uso de medidas tridimensionais do espago reciproco como prova de
conceito revelou pontos interessantes. A reconstrucdo do 3D-RSM em Python sofre pela falta de ferramentas
especializadas para a visualizacdo de dados 3D desse tipo. Isso resulta em uma imagem que consome muito
processamento para ser gerada, e ndao possui boa qualidade quando comparada a do MATLAB. A ferramenta
NVIDIA IndeX é bastante promissora, realizando o plot tanto com maior performance quando com melhor
qualidade. Essa ferramenta poderia ser implementada em paralelo com o DAF, de forma que o tratamento
de dados poderia ser realizado durante o tempo de linha. Essa implementacdo iria ndo somente aumentar
o potencial de tomada de decisdo, otimizando o tempo da linha, mas também permitiria que a parte mais
onerosa do processamento de dados fosse realizada pela infraestrutura do Sirius, facilitando a obtencao de
resultados por parte dos usuérios.

Por fim, com base nesses exemplos, vimos que desenvolvimento interno de ferramentas como o DAF
pode viabilizar solucgoes especificas para movimentagao de amostras que levem em consideragao caracteristicas
de cada linha de luz do Sirius, além de proporcionar um melhor suporte para obtencao rapida de resultados

aos usudrios, o que é ideal para um laboratorio nacional multiusuério como o LNLS.
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8 Perspectivas

Melhora da performance e consisténcia do DAF

Como os calculos do DAF sao baseados em minimizagdo, podem ocorrer casos em que 0 processo caia
em um minimo local e ndo consiga encontrar uma solu¢do mesmo que ela exista. Por padrdo (que nao pode ser

19 530 realizadas 1000 iteracoes. Dessa forma, um tempo gigantesco pode ser perdido

mudado em alto nivel)
nesses casos. Com o intuito de avancar na consisténcia e performance, uma abordagem possivel poderia
ser melhorar a posi¢ao inicial do processo de minimizacao. Com valores iniciais otimizados, os processos de
minimizacao seriam mais certeiros e rapidos, melhorando nao so a consisténcia como também a performance

do DAF.
Implementagao de modo de varredura em energia

Existem outros modos de operacao que podem ser implementados ao DAF. Por exemplo, o modo
que envolve 2 angulos de detectores e a energia (2D + ) é chamado “energy” na tabela (1) e mencionado por
(YOU, 2018). Como é possivel a variar energia de forma controlada em sincrotrons, pode-se utilizé-la como

grau de liberdade para varrer o espago reciproco enquanto a amostra fica parada.
Integracao do tratamento de dados e ferramentas de ajuste

Como mencionado, a integracao de tratamento de dados e ferramentas de ajuste para experimentos
de XRD se torna muito mais direta com o desenvolvimento de uma ferramenta como o DAF. Essa integracio
seria ainda mais trivial para algumas ferramentas que o zrayutilities ja disponibiliza, podendo agregar diversas
vantagens para a tomada de decisao do usuario durante o experimento. Além do mais, como grande parte
do tratamento dos dados obtidos durante o experimento poderiam ser processados através do zrayutilities,
que é o cerne do DAF, essa tarefa seria bastante simplificada. Com isso mapeamentos do espago reciproco
poderiam ser diretamente integrados com o DAF, e com o auxilio da ferramenta desenvolvida pelo GCC
a reconstrucao tridimensional do espago reciproco poderia ser até mesmo realizada simultaneamente com o

experimento, trazendo informagcoes de extrema relevancia em tempo real.
Uso da interface grafica para definir uma roi

Virias ferramentas estdo sendo planejadas para serem desenvolvidas a partir da interface grafica
gerada pelo comando daf.rmap do DAF. Uma delas seria a possibilidade de definir um intervalo de varre-
dura auxiliado por essa ferramenta. Essa capacidade seria especialmente interessante para analisar tensio e
relaxamento entre filmes finos e substratos, de forma ilustrada na figura (8.1). Nela, poderia ser selecionada
uma area como a mostrada em verde através do mouse e uma seria feita sobre aquela regiao do espago reci-
proco. Nesse caso, o processo também levaria em conta automaticamente parametros importantes para esses

célculos, como por exemplo a distédncia amostra-detector.

Predigao das reflexoes disponiveis sob restricoes de ambientes de amostra

1986 pode ser alterado diretamente no cédigo fonte do zrayutilities.
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Na linha EMA, em que o intuito é estudar materiais sobre condi¢oes extremas de pressao, tempe-
ratura, ou campo magnético, os ambientes de amostra podem limitar bastante a movimentagao da amostra.
Dessa forma, as regioes no espaco reciproco podem ficar bastante restringidas. Como ja discutida anteri-
ormente, uma maneira para acessar mais reflexdes é comprimir o espaco reciproco ao aumentar a energia.
Porém alguns experimentos restringem tanto o movimento angular do difratémetro, que isso nao é o suficiente.
Esse é o caso para os experimentos em altas pressoes utilizando célula de bigorna de diamante (DAC)2° na
qual o desenho esquemaético é mostrado na figura (8.2). Logo ao lado podemos ver as reflexoes acessiveis sob
restrigoes de um 20 méximo de 60, 3°. A partir disso, poderia ser desenvolvida conjuntamente ao laboratério

de preparacio de amostra uma abordagem para sondar as reflexdes de interesse.

Figura 8.1: A interface do daf.rmap poderia ser utilizada para selecionar uma regido do espaco reciproco que
se queira sondar auxiliado por uma GUI
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Fonte: O autor.

Figura 8.2: A esquerda: célula de pressdao DAC, mostrando sua restri¢do angular. A direita: espago reciproco
disponivel sob as restrigdes impostas pela DAC

Fonte: O autor.

20Do inglés Diamond Anvil Cell.
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APENDICE A — Tensor métrico

Podemos definir um sistema de coordenadas cristalografico cujo os vetores da base sdo: [a1,ag, az].

Assim, um vetor nesse sistema tem sua representagdo dada por (GIACOVAZZO et al., 1992):

r = za; + yas + zaz = (a, as, az) = AX, (A-1)

ISEEN S

em que AX ¢ a matriz referente a base do sistema, enquanto X é a matriz de coordenadas.
Usando o sistema de coordenadas definido logo acima, podemos calcular o produto escalar entre dois

vetores ry e ry da seguinte forma:

ry-ro = (9513173113272133) ’ (I2317y232az233)

= 217287 + Y1283 + 212283 + (T1Y2 + T2y1)a1a2 cos Y + (122 + ¥221)a1az cos B+ (y122 + Y221)a2a3 cos a.

Em notagao matricial, temos:

a;-a; ai-az a;-ag T2
ry-ry = (21,41,21) |az-a; ax-ap ap-as y2 | = X1GXos. (A-2)
ag-a; Aaz-az ag-asg 22

A matriz G é matriz métrica, também conhecida como tensor métrico. Seus elementos definem tanto o

modulo de aj, as, a3 quanto os angulos entre eles. E seu determinante, dado por

G = ala2a3(1 — cos® a — cos? B — cos? y + 2 cos o cos B cos ), (A-3)

¢é igual ao quadrado do volume da célula unitéaria.
De forma anéloga a feita para rede direta, podemos definir o tensor métrico para a rede reciproca,

cuja a base dada pelos vetores da rede reciproca é da forma: [a}, a3, a}]. Escrevendo o tensor métrico temos:

* * * *
aj-aj aj-aj; aj-a}

* __ * * * *

G*=|a}-a] aj-a; aj-a}|, (A-4)

* * * *
a;-aj a3z-a; aj-aj;

e temos que o produto:

G*. G =

e
o = o
— o O
—
v
Ot
=

portanto G* = G~ e det(G*) = zy1qy-
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APENDICE B — Calculo da matriz B

Em cristalografia, geralmente os calculos geométricos sao feitos em sistemas ortonormais, que envolve
entao a transformacdo de base partindo do sistema de coordenada relacionada ao sistema cristalino em
questao. Representando um sistema de coordenadas com base ortonormal e o sistema de coordenadas do
cristal, respectivamente por (GIACOVAZZO et al., 1992):

(3] ap
E = €9 e A = ag . (B—l)
€3 as

Assim, temos a seguinte correlacao feita pela matriz B, que descreve um sistema de coordenadas com relagao

ao outro como E = BA e A = B7!'E, ou de forma explicita:

al

a by l2 l3 €1

a J—

(72 =|mi mo mg e |, (B-2)
b ny ng N3 e3

as

ar A as oy

em que (ly,12,13), (m1, ma,m3), e (n1,n2,n3) séo os cossenos diretores dos vetores unitarios oL, a2 B

E. Podemos reescrever a equagao acima como:

aj arly ayly ayls €1
ag = asmi a2Mo  AaAgM3 €9 . (B—3)
ag asni agnz  agng €3

Existem infinitas maneiras pelas quais se pode ortonormalizar um sistema cristalogréfico. Por exem-
plo, se for tomado e; ao longo de aj, es restringido a estar no plano definido pelos vetores (a},a%) e ez ao
longo de a3 temos nesse caso que a matriz B serd (GIACOVAZZO et al., 1992):

aj ajcosvy* as cos 3*
_ * o P *
B=|0 ajsinyx —ajsinf*cosa | . (B-4)
0 0 !

az
Nela, 8* e v* sdo os dngulos entre os vetores da rede reciproca andlogo aos da rede direta. Dessa forma, a

matriz B obedece a transformacdo E = BA que estamos interessados.
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