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Resumo

O tratamento de dados e o controle de movimento do difratômetro são aspectos importantes que

podem melhorar o sucesso de um experimento de difração de raios X signi�cativamente. Um processamento

acurado do sinal detectado em resultados com signi�cado físico levam a um rápido entendimento do objeto

de estudo, além de auxiliar na capacidade de decisão. Similarmente, uma interface amigável e intuitiva

de controle para experimentos que depende, tanto no movimento de amostra, quanto do de detector pode

impactar signi�cativamente na experiência geral e otimizar a utilização do tempo de linha. Mapas do espaço

recíproco, de (PIETSCH; HOLY; BAUMBACH, 2006) são exemplos que poderiam tirar vantagem dessa

abordagem ao utilizar os detectores de área disponíveis na linha EMA do Sirius. Em poucas palavras, é

necessário a transformação dos dados no sistema de coordenadas do laboratório (ângulos) para o espaço

recíproco (vetor Q). Por cima disso, a ferramenta para o controle seria também capaz de mover e sondar

direções distintas do espaço recíproco dependendo das características da amostra. Todo esse processo tem

o potencial de ser feito �por de baixo dos panos�, fazendo com que seja fácil para os usuários controlarem o

experimento e ter seus resultados já durante o tempo de linha. Com isso em mente, no presente trabalho é

mostrado alguns dos progressos relativos à customização e integração de ferramentas desenvolvidas em Python

focadas em experimentos de difração de raios X (DRX) para monocristais e �lmes �nos. Será comparado

a estratégia atual para substituir o software de controle da linha SPEC (SPEC, 1998) usando bibliotecas

em Python (como o xrayutilities, de (KRIEGNER; WINTERSBERGER; STANGL, 2013)), particularmente

para o caso do Difratômetro Huber (4S+2D) disponível na linha EMA. Com respeito ao tratamento de dados,

algumas das soluções ao lidar com intensidades não igualmente espaçadas durante o desenvolvimento de um

mapeamento de espaço recíproco tridimensional (3D-RSM) também são mostrados. Além disso, scripts de

usuários (ou �macros�) podem também ser compatíveis com esse ambiente ao usar a uma linguagem tão

popular no meio cientí�co quanto o Python, no momento isso permitirá o desenvolvimento constante de

software pelo pessoal do Laboratório Nacional de Luz Síncrotron (LNLS).

Palavras-chaves: Difração de raios X. Python. Controle e tratamento de dados. Difratômetro. 3D-RSM.
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Abstract

Data treatment and setup movement control are essential aspects that can improve the success

rate of an X-ray di�raction experiment signi�cantly. A robust and seamless processing of the detected

signals into physically-meaningful results leads to a fast understanding of the object of study, as well as a

decision-making support. Similarly, a friendly and intuitive control-interface for experiments that rely on

both samples and detectors movement can signi�cantly impact the overall experience while optimizing the

usage of allocated beamtime. Reciprocal Space Maps, from (PIETSCH; HOLY; BAUMBACH, 2006) is an

example that could take advantage of such an approach when using the available area detectors at the EMA

beamline at Sirius. In a few words, it requires the transformation of the data from the laboratory-space

(angles) into the reciprocal space coordinates (Q vector). On top of that, the experiment controlling tool

would also be able to move and probe distinct directions of the reciprocal space depending on the sample

features. All of this process has the potential to be performed �under the hood�, making it easier for users

to control the experiment and have their results already during the beamtime. With this in mind, here is

presented some of the progress regarding the customization and integration of python-based tools focused

on single-crystals and epitaxial thin �lms X-ray di�raction experiments (XRD). Here, it will be discussed

the current strategy to replace the beamline controlling software SPEC (SPEC, 1998) into Python libraries

(such as xrayutilities, from (KRIEGNER; WINTERSBERGER; STANGL, 2013)), particularly for the case

of the (4S+2D) Huber di�ractometer available at EMA. On the data treatment side, some of the solutions

in dealing with non-regularly spaced data during the development of a three-dimensional reciprocal space

maps (3D-RSM) results are also shown. Furthermore, users scripts (or �macros�) may also be compatible

with this environment by using a popular scienti�c programming language as Python, at the same time it

allows constant software development by the Brazilian Synchrotron Light Laboratory (LNLS) sta�.

Key-words: X-ray di�raction. Python. Control and data treatment. Di�ractometer. 3D-RSM.
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1 Introdução

A maneira de como era feito o estudo da matéria sofreu uma grande revolução por volta de 100 anos

atrás, após a divulgação dos primeiros resultados de difração de raios X (XRD)1. Os experimentos de Max

von Laue, William Henry Bragg, e William Lawrence Bragg deram as primeiras contribuições para a sólida

base da cristalogra�a, tida hoje como uma área de conhecimento abrangente que reúne especialidades como

física, química, matemática, biologia, medicina, geologia (AZAROFF, 1968); (GIACOVAZZO et al., 1992).

A razão para isso está intimamente relacionada a vasta ocorrência de materiais cristalinos e sua de�nição

descrita pela União Internacional de Cristalogra�a (IUCr): �por �cristal� de�nimos qualquer sólido que tem

um diagrama de difração essencialmente discreto� (IUCR, 1992).

Novas abordagens e técnicas de caracterização que utilizam raios X são constantemente desenvolvidas,

o que faz com que atualmente já seja possível determinar de forma relativamente rápida o arranjo estrutural

de, por exemplo, proteínas formadas por milhares de átomos. Uma caracterização e�ciente dá sólido suporte

tanto para o avanço do conhecimento cientí�co vigente quanto para a síntese de novos materiais, sendo estes

de interesse biológico (WILKINS; STOKES; WILSON, 1953), químico (GATTI; MACCHI, 2012), e físico

(ASHCROFT; MERMIN, 2011). Atualmente, técnicas de difração de raios X de alta resolução (HRXRD)2

estão bem estabelecidas e se mostram como ferramenta avançada para estudos de pequenas modi�cações em

redes cristalinas, sendo então essencial para o avanço de dispositivos baseados em �lmes �nos.

Nas últimas décadas, o desenvolvimento dos �lmes �nos tem se tornado um ramo muito relevante da

ciência de materiais e tecnologia. No último século surgiram várias aplicações nas áreas da óptica, armaze-

namento de dados, sensores, microeletrônica, proteção, entre outros. Todas essas aplicações tiveram grande

impacto no desenvolvimento de �lmes �nos e técnicas de deposição relacionadas. Cada �lme �no pode ser

feito de um determinado material, dependendo do tipo de aplicação que se pretenda, podendo serem feitos

de metais, compostos inorgânicos, compostos orgânicos ou de moléculas biológicas (BIRKHOLZ, 2004).

Com o desenvolvimento da indústria de semicondutores e também o aumento do interesse em pesquisa

de �lmes �nos de materiais magnéticos, orgânicos dentre outros, experimentos de difração de raios X de

alta resolução se tornaram mais relevantes. A tarefa de desenvolver um �lme �no se resume a estabelecer

que o processo de deposição seja otimizado, de forma que o arranjamento dos átomos possibilite que o

�lme satisfaça sua funcionalidade pretendida. Na optoeletrônica, por exemplo, é necessário uma epitaxia

subsequente de �lmes �nos de diferentes materiais semicondutores. Dessa forma, cada camada deve ter uma

espessura de apenas algumas camadas atômicas para poder explorar efeitos quânticos. As �nas camadas

são incorporadas em revestimentos muito mais espessos ou multicamadas que possuem composição química

um pouco diferente umas das outras com a �nalidade de con�namento eletrônico e óptico. A maneira como

essas interfaces interagem é extremamente relevante para a função que os dispositivos terão, e a HRXRD

tem muito a contribuir para esse tipo de problema (PIETSCH; HOLY; BAUMBACH, 2006); (BIRKHOLZ,

2004).

Pelo fato de a estrutura estar intimamente ligada as propriedades de qualquer material, fazer a

caracterização estrutural das propriedades é extremamente relevante para o desenvolvimento de dispositivos.

Diferentemente de algumas técnicas de caracterização que fornecem informação diretas de determinada área

super�cial, a XRD nos informa sobre o espaço recíproco da amostra que contêm informações estruturais

médias sobre um grande volume. Além disso, essa técnica da acesso a interface interna do material de forma

não destrutiva, podendo ser performada de forma bastante rápida quando feita em fontes de intenso brilho,

1Do inglês X-ray Di�raction.
2Do inglês High Resolution X-Ray Di�raction.
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como o caso do Sirius (PIETSCH; HOLY; BAUMBACH, 2006).

Atualmente, a utilização de raios X para o estudo a respeito da ciência de materiais são corriqueiras

em laboratórios, e aplicações industriais para sondagem de processos crescem cada vez mais. O grande uso

de técnicas de XRD se deve ao desenvolvimento de novos equipamentos para essa técnica. Difratômetros

modernos são equipados para oferecer ao usuário a possibilidade de realizar o experimento em diversas

condições experimentais. Portanto, essa instrumentação pode ser utilizada para experimentos de HRXRD,

além de medidas de imperfeições nos materiais.

A linha EMA (Extreme condition x-ray Methods of Analysis) do Sirius é voltada para fazer análises

sob condições extremas de pressão, temperatura, e campo magnético. Em uma das estações experimentais

dessa linha existe um difratômetro de seis círculos. Com um difratômetro desse tipo, temos que o elemento

de resolução é pequeno o su�ciente para resolver artefatos próximos no espaço recíproco. Possibilitando a

caracterização de heteroestruturas e sistemas de multicamadas através do mapeamento do espaço recíproco.

Ao invés de gerar grá�cos 1D de intensidade em função de 2θ, pode-se construir grá�cos bidimensionais

da intensidade em função das componentes do vetor espalhamento Q (Qx, Qz), permitindo a obtenção do

desalinhamento de rede entre substrato e �lme além do grau de relaxação. Além disso, o mapeamento do

espaço recíproco permite sondar a distribuição do espalhamento difuso nas proximidades de um pico de Bragg.

Todas essas possibilidades citadas anteriormente podem ser potencializadas ao se fazer o mapeamento 3D,

que leva em conta todas as componentes de Q, i.e., Qx, Qy e Qz já que mais uma dimensão de informação é

adicionada (PIETSCH; HOLY; BAUMBACH, 2006).

1.1 Motivação

O presente trabalho é motivado em integrar o controle e tratamento de dados de um experimento de

XRD da linha de luz EMA do Sirius. Para que um experimento tenha sucesso, um número grande de variáveis

deve ser levado em consideração, e sem dúvida o controle e automação do experimento para a aquisição dos

dados, bem como a análise desses dados coletados, que é de extrema importância. O processamento dos sinais

detectados levando a interpretações com signi�cado físico do objeto de estudo de forma rápida e precisa, pode

dar um grande suporte para a tomada de decisão durante o experimento. Ademais, uma interface amigável e

intuitiva para o controle do experimento, além da possibilidade de fazer grande parte do tratamento de dados,

que no momento depende inteiramente da expertise do usuário, diretamente na linha usando a infraestrutura e

conhecimento do Sirius, podem impactar positivamente no tempo de utilização da linha por futuros usuários.

1.2 Objetivos

O presente trabalho se propôs a desenvolver uma ferramenta em Python para o controle e automação

do experimento de difração de raios X, além de uma rotina também em Python para o mapeamento tridi-

mensional do espaço recíproco. Esses programas são voltados para experimentos de difração em �lmes �nos

e monocristais. Ambos possuem a característica de poderem ser realizados �por de baixo dos panos�, melho-

rando a experiência e interação dos usuários com o experimento. Como Python tornou-se a nova linguagem

padrão do LNLS, essa abordagem permitirá o contínuo desenvolvimento e integração de novas ferramentas

pelos grupos de computação do LNLS.

Dessa forma, podemos listar os objetivos desse trabalho como sendo:
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1) Desenvolver uma ferramenta de controle para o difratômetro de 6 círculos baseada em

Python;

2) Aprimorar o tratamento de dados de experimentos que envolvam o mapeamento tridi-

mensional do espaço recíproco (3D-RSM) também usando a linguagem de programação

Python, visando uma melhor integração entre controle e tratamento de dados.
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2 Teoria

2.1 Convenções iniciais

A luz é uma onda eletromagnética, que pode ser descrita em função do campo magnético B, e do

campo elétrico E. Contudo, para os efeitos de interferência e difração em grande parte dos casos não é

necessário considerar seu caráter vetorial. Assim, considerando uma onda escalar E(x, t), facilita bastante o

seu tratamento (NUSSENZVEIG, 2014).

Para a descrição de ondas, será adotada a notação complexa, da forma (NUSSENZVEIG, 2014):

E(x, t) = Re[v(x)e−iωt]. (2.1)

Para uma onda plana v(x) = A0e
−iδ · e−ik·x, a equação (2.1) se torna:

E(x, t) = A0 cos(k · x− ωt+ δ) (2.2)

tal que A0 é a amplitude da onda, ψ(x, t) ≡ k · x− ωt+ δ é a fase da onda, k ≡ kû é o vetor de onda, û é o

versor da direção da propagação, ω é a frequência angular, e δ é a constante de fase.

Para uma frente de onda esférica, proveniente de uma fonte puntiforme, descrita por:

v(x) = A0e
−iδ · e

−ikr

r
, (2.3)

a equação (2.1) �ca:

E(x, t) =
A0

r
cos(kr − ωt+ δ), (2.4)

no qual r = |x|.
As frentes de onda, i.e., superfícies na qual a fase é contante, para ondas planas, são planos perpen-

diculares a direção do vetor de onda k. Para ondas esféricas, as frentes de ondas são esferas, e a amplitude

decresce com o inverso de r (NUSSENZVEIG, 2014).

2.2 Intensidade

A intensidade corresponde a energia média por unidade de tempo e de área que atravessa um elemento

de área perpendicular a direção de propagação (NUSSENZVEIG, 2014). Considerando uma onda monocro-

mática, o valor da intensidade varia com o tempo para uma certa posição x, de acordo com cos2(ωt+α), tal

que α é uma constante. Para a luz visível, ω é muito grande, de forma que a oscilação é tão veloz que um

detector só irá captar o valor médio (NUSSENZVEIG, 2014)

< cos2(ωt+ α) > = < sin2(ωt+ α) > =
1

2
. (2.5)

Portanto o valor médio da intensidade é proporcional a:

I(x) = |v(x)|2, (2.6)

sendo constante para ondas planas, enquanto para ondas esféricas cai com o inverso do quadrado da distância.
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2.2.1 Intensidade para interferência de duas ondas

Para sabermos a intensidade em um ponto P devido a soma da contribuição de duas ondas mono-

cromáticas P1 e P2, podemos escrever a equação (2.1) como (NUSSENZVEIG, 2014):

E(x, t) = Re[v1(x)e−iωt + v2(x)e−iωt]. (2.7)

Dessa forma, a intensidade no ponto P é dada por:

I(x) = |v1(x) + v2(x)|2. (2.8)

Devemos notar que o termo |e−iωt| tem valor unitário, assim, o fator temporal não afetará o resultado �nal.

Por isso, no tratamento de ondas monocromáticas o fator temporal |e−iωt| será omitido. Iremos trabalhar de

forma direta com a função de onda resultante v(x), e o resultado completo �cará implícito, sendo dado pela

equação (2.1).

Podemos indicar o módulo e a fase de um número complexo separadamente, reescrevendo a equação

(2.8) dessa forma, temos:

I(x) = ||v1|eiφ1 + |v2|eiφ2 |2, (2.9)

resultando em:

I(x) = (|v1|e−iφ1 + |v2|e−iφ2)(|v1|eiφ1 + |v2|eiφ2)

I(x) = |v1|2 + |v2|2 + |v1||v2|[ei(φ2−φ1) + e−i(φ2−φ1)]

I(x) = |v2| = |v1|2 + |v2|2 + 2|v1v2| cos(φ2 − φ1). (2.10)

Visto que |v1|2 corresponde a intensidade I1, relativa a onda v1, de forma análoga, |v2|2 é a intensidade

relativa a onda v2, podemos reescrever o resultado da equação (2.10) como (NUSSENZVEIG, 2014):

I = I1 + I2 + 2
√
I1I2 cos(∆), (2.11)

tal que ∆ ≡ φ2−φ1 é a diferença entre as fases das duas ondas. Chamamos o ultimo termo da equação (2.11)

de termo de interferência e, dessa forma, a (2.11) consiste na lei básica para a interferência de duas ondas.

Analisando o termo cos(∆) da (2.11), teremos interferência construtiva quando cos(∆) = 1, que

ocorre para ∆ = 2nπ (n ∈ Z), e a condição para interferência destrutiva é ∆ = (2n + 1)π, que resulta em

cos(∆) = −1. Para esse casos a (2.11) se torna:

∆ = 2nπ ⇒ I = (
√
I1 +

√
I2)2 (contrutiva)

∆ = (2n+ 1)π ⇒ I = (
√
I1 −

√
I2)2 (destrutiva)

. (2.12)

Para o caso particular em que as ondas incidentes no ponto P possuem a mesma intensidade, a equação

(2.12) se torna:
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I1 = I2 =

I = 4I1 (construtiva)

I = 0 (destrutiva)
. (2.13)

2.3 Difração

A �gura (2.1) mostra um anteparo opaco com um pequeno furo que é incidido perpendicularmente

por um feixe luminoso paralelo e monocromático. A partir da lei da propagação retilínea da óptica geométrica,

espera-se que uma imagem brilhante igual ao orifício se forme no segundo anteparo; enquanto o restante do

anteparo seria tomado pela escuridão. Entretanto, não é o que se observa (NUSSENZVEIG, 2014).

Figura 2.1: Difração por um pequeno furo visto em um anteparo a uma distância R.

Fonte: Adaptado de (NUSSENZVEIG, 2014).

Se o orifício tem tamanho próximo ao comprimento de onda da onda incidente, e a distância R ao

anteparo de observações é grande o su�ciente, o feixe irá penetrar na região de sombra geométrica gerando

franjas brilhantes e escuras próximas ao limite da sombra. Francesco Maria Grimaldi observou esse efeito

em seu livro publicado em 1665, e o termo difração foi cunhado por ele para descrever esses desvios da

propagação retilínea de luz (NUSSENZVEIG, 2014). Considerando distâncias não excessivamente grandes,

observaremos no anteparo algo semelhante com o objeto que está espalhando, apesar de estar imerso entre

franjas claras e escuras. Esse tipo de difração recebe o nome de difração de Fresnel.

O fenômeno de difração está intimamente relacionado ao de interferência, e ambos são característicos

de uma teoria ondulatória da luz. É corriqueiro que os fenômenos de difração sejam categorizados com relação

a distância entre o objeto espalhador (difratante) com relação ao anteparo de observação (NUSSENZVEIG,

2014).

Para o caso em que as distâncias são consideravelmente grandes, formalmente R → ∞, o resultado

irá depender apenas da direção de observação, e não se assemelhará com a forma do objeto difratante. Nesse

trabalho estamos interessados nesse tipo de difração, que recebe o nome de difração de Fraunhofer

2.3.1 Difração de Fraunhofer

Para a descrição matemática do fenômeno de difração, será utilizado o Princípio de Huygens-Fresnel-

Kirchho�, mostrado na equação (2.14) (NUSSENZVEIG, 2014):

v(P ) =
1

iλ

∫
A

cos θ′v0(P ′)
eikr

r
dσ. (2.14)

O princípio de Huygens-Fresnel-Kirchho� diz que a onda resultante em um ponto P , vide �gura (2.2),
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é igual a contribuição de todos os pontos P ′ sobre A, pelos quais ondas esféricas de amplitude v0(P ′)dσ são

emanadas. Em que A é a abertura do anteparo S atingido pela onda incidente, cos θ′ é o fator de obliquidade

proposto por Fresnel, de forma que θ′ é o ângulo que vetor de onda em P ′ faz com o vetor PP′, e λ é o

comprimento de onda.

Figura 2.2: Difração pela abertura do anteparo S observada em um ponto distante P .

Fonte: Adaptado de (NUSSENZVEIG, 2014).

Uma distância su�cientemente grande pode ser de�nida como a distância em que não se observa mais

efeitos de difração de Fresnel. Para que isso ocorra, a seguinte condição deve ser satisfeita (NUSSENZVEIG,

2014):

D2

λR
<< 1; R >>

D2

λ
; R >> D =⇒ R

D
>>

D

λ
>> 1 , (2.15)

em que D representa o diâmetro da abertura A, e λ é o comprimento de onda.

Seja û0 o versor que representada a direção da propagação de uma onda plana que incide no anteparo

S, P ′ um ponto sobre a abertura A, e denotemos OP′ por x′. Dessa forma, obtemos na (2.14):

v0(P ′) = a0e
ik0·x′ , (2.16)

tal que a0 é a amplitude incidente, e k0 ≡ kû0.

Assumindo que a condição para distância su�cientemente grande seja satisfeita, podemos supor que

as ondas que chegam ao ponto de observação P sejam paralelas. Além disso, pelo fato de que a parte

majoritária da intensidade irá para direções próximas a û0, a variação do fator de obliquidade pode ser

desprezada sobre A, e assim, podemos substituir cos θ′ por cos θ0. Em que θ0 consiste no ângulo entre a

direção da onda incidente (û0) e a normal do plano A. Podemos reescrever a equação (2.14), da forma:

v(p) = a0f(k, û, û0)
eikR

R
, (2.17)
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no qual f(k, û, û0), é:

f(k, û, û0) =
cos θ0

iλ

∫
A

eik(û0−û)·x′d2x′. (2.18)

Pode-se concluir que a (2.17) representa uma onda esférica originada da abertura A, que tem como

única dependência da distância o fator eikR

R de propagação de onda esférica. Isso está de acordo com o

esperado, pois visto de um ponto muito distante, a abertura deverá se assemelhar a uma fonte puntiforme.

Contudo, temos que a amplitude da onda esférica, que também é proporcional a amplitude a0 da onda

incidente, depende da direção com que a onda incide no anteparo (û0) e também da direção de observação

(û) através do fator f(k, û, û0), que expressa a amplitude de difração na direção da observação. Temos

também que a integral da equação (2.18) representa o fator de interferência, já que ela leva em consideração

as diferenças de fase dos pontos P ′ sobre A.

A máxima intensidade é obtida quando as direções de û0 está na direção de û, de forma que a

interferência é construtiva, já que ela se dá na direção de propagação geométrica, dada por:

f(k, û, û0) =
cos θ0

iλ

∫
A

d2x′ =
cos θ0

iλ
σA, (2.19)

em que σA corresponde a área da abertura A. Usualmente, convêm expressar a amplitude de forma relativa

à amplitude máxima, da seguinte forma (NUSSENZVEIG, 2014):

f(k, û)

f(k, û0)
=

1

σA

∫
A

eik(û0−û)·x′d2x′, (2.20)

no qual o a notação foi simpli�cada. A partir do módulo quadrado das amplitudes, podemos também escrever

a razão entre as intensidades, que �ca:

I(û)

I(û0)
=

1

(σA)2

∣∣∣∣∫
A

eik(û0−û)·x′d2x′
∣∣∣∣2 . (2.21)

2.3.2 Rede de difração unidimensional

Uma rede de difração unidimensional consiste em um arranjo de elementos difratantes periódicos em

uma direção, por exemplo, um anteparo com fendas de mesmo tamanho, dispostas em uma linha com espa-

çamentos equidistantes entre os centros de cada fenda da rede. Comecemos por desenvolver uma expressão

para um anteparo com duas fendas, como na �gura (2.3), e em seguida estenderemos para uma rede com N

fendas (NUSSENZVEIG, 2014).

2.3.3 Par de fendas

A �gura (2.3) possui um par de fendas de largura 2a dispostas ao longo do eixo x. O ponto O é a

origem do sistema e está situada no centro de uma das fendas, O′ está no centro da outra fenda, e a distância

entre os centro das fendas O e O′ é d. Consideremos que a iluminação devido a uma fonte linear incoerente

atinja as fendas com a incidência normal, podemos reescrever a equação (2.20), como (NUSSENZVEIG,

2014):

f(k, û) = C

∫
A

e−ikû·x
′
d2x′, (2.22)

tal que C é a constante de normalização.
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Figura 2.3: Difração por duas fendas.

Fonte: Adaptado de (NUSSENZVEIG, 2014).

Denotando os cossenos diretores da direção de observação, û, por (α, β, γ), e portanto, û ≡ (α, β, γ).

Um ponto sobre a fenda, �gura (2.3), é representado por x′ = (x′, 0, 0). Substituindo em (2.22), temos:

f(k, α) = C

∫
A

e−ikαx
′
d2x′ = C

[∫ a

−a
e−ikαx

′
dx′ +

∫ d+a

d−a
e−ikαx

′
dx′

]
. (2.23)

Fazendo uma troca de variável x′ = d+ x na segunda integral da (2.23), resulta em:∫ d+a

d−a
e−ikαx

′
dx′ = e−ikαd

∫ a

−a
e−ikαxdx, (2.24)

a equação (2.23) se torna (NUSSENZVEIG, 2014):

f(k, α) = C
[∫ a
−a e

−ikαx′dx′ + e−ikαd
∫ a
−a e

−ikαxdx
]

f(k, α) = f1(k, α)
[
1 + e−ikαd

]
, (2.25)

na qual f1(k, α) representa a amplitude relativa a uma só fenda. O caso geral, em que a onda incidente sobre

as fendas possui uma direção qualquer û0 ≡ (α0, β0, γ0), é obtido substituindo α por α− α0.

Analisando a equação (2.25), vemos que a contribuição da segunda fenda é idêntica a primeira a

não ser pelo fator de fase e−ikαd, que ocorre devido a diferença de caminho entre as ondas difratadas pela

primeira e a segunda fenda.

Para avaliar a intensidade decorrente das ondas difratadas pelas duas fendas é utilizada a equação

(2.11), que, pelo fato de a onda incidente em cada fenda ser a mesma, possuem a mesma intensidade. Notando

que α ≡ sin θ, no qual θ é o ângulo entre a normal do anteparo de observações e a direção de observação,

podemos reescrever a eq. (2.11) como:

I(α) = 2I1(α)(1 + cos ∆) = I1(α) · 4 cos2

(
∆

2

)
, (2.26)

em que
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∆ = kdα = kd sin θ (2.27)

representa a defasagem entre os pontos originados por cada fenda e I1(α) é a intensidade relativa a apenas

uma fenda.

A intensidade dada pela equação (2.26) é uma função periódica com o período de 2π, devido ao termo

cos2
(

∆
2

)
, em que as interferências construtivas ocorrem quando:

∆m = 2mπ ⇐⇒ αd = d sin θ = mλ (m = 0,±1,±2, ...). (2.28)

O termo I1(α) é uma função proporcional a sin2X
X2 , com o pico central delimitado pelos pontos:

X ≡ kαa = ±π ⇐⇒ αa = a sin θ = ±λ
2
. (2.29)

Ao analisar a equação (2.26), vemos que I1(α) corresponde ao fator relativo a difração, e o fator

4 cos2
(

∆
2

)
descreve a interferência entre as ondas. Supondo d algumas vezes maior do que 2a, temos que o

fator de difração varia lentamente com sin θ, quando comparado ao fator de interferência, dessa forma ele irá

modular o fator de interferência. O grá�co da �gura (2.4) ilustra esse efeito, nela, vemos também os máximos

principais de interferência, obtidos pela equação (2.28), que variam de forma lenta devido a multiplicação

pelo fator de difração.

Figura 2.4: Grá�co mostrando a modulação no fator de interferência devido ao fator de difração para a
difração por duas fendas.

Fonte: O autor.

2.3.4 Difração por N fendas

Podemos generalizar o resultado obtido previamente para duas fendas para N fendas. Comecemos

por considerar uma rede de de difração comN fendas de mesma largura 2a, dispostas de maneira regularmente

espaçadas, com d sendo a distância entre seus centros. Extrapolando a equação (2.25) para N fendas, vemos
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que a defasem da fenda de ordem p + 1 com relação a primeira fenda é e−ikα(pd), e obtemos a seguinte

expressão (NUSSENZVEIG, 2014):

f(k, α) = f1(k, α)
[
1 + e−ikαd + e−2ikαd + · · ·+ e−(N−1)ikαd

]
. (2.30)

A soma da equação (2.30) pode ser escrita como:

N−1∑
n=0

e−inkαd =

N−1∑
n=0

e(−ikαd)n (2.31)

Notemos que a soma da equação (2.31) representa a soma de uma progressão geométrica, que possui razão

e−ikαd e N termos, podendo ser calculada pela soma de N termos de uma progressão geométrica:

1− e−iNkαd

1− e−ikαd
=

1− e−iN∆

1− e−i∆
, (2.32)

em que ∆ é a diferença entre as fases de duas fendas consecutivas, dada pela equação (2.27). Podemos agora

formular uma expressão para a intensidade gerada a partir da difração das N fendas, da forma:

I(α) = I1(α) ·
∣∣∣∣1− e−iN∆

1− e−i∆

∣∣∣∣ (2.33)

desenvolvendo:

|1− e−i∆| = (1− e−i∆)(1− ei∆) = 1− (e−i∆ + ei∆) + 1

= 2− 2 cos(∆) = 2(1− cos(∆)) = sin2

(
∆

2

) . (2.34)

Por �m, a equação (2.33), se torna (NUSSENZVEIG, 2014):

I(α) = I1(α) ·
sin2

(
N∆

2

)
sin2

(
∆
2

) . (2.35)

Comparando com a equação (2.26), que descreve a intensidade para a difração de duas fendas,

notamos que ela se mantém como uma função periódica de ∆ com período de 2π. Portanto, podemos estudar

a função apenas dentro de um período, e tomando um intervalo simétrico a origem como −π ≤ ∆ ≤ π,

podemos levar em consideração apenas ∆ > 0, já que se trata de uma função par.

Quando ∆ = 0 a equação (2.30) assume o valor de f1(k, α) · N , ou seja, a amplitude resultante é

igual a N vezes a de uma única fenda, que ocorre devido a interferência construtiva das N fendas. Nesse

mesmo caso, a intensidade resultante é ampli�cada pela fator N2. Porém, quando ∆ = π
2 o numerador e

denominador da equação (2.35) tem seus valores próximos a 1, assim, o valor da função é aproximadamente

N2 vezes menor do que no caso anterior (NUSSENZVEIG, 2014).

Quando N é grande, que é nosso caso de interesse, podemos considerar apenas o intervalo em que

|∆| << 1, que nos permite fazer a seguinte aproximação:

sin2
(
N∆

2

)
sin2

(
∆
2

) ≈ N2 ·
sin2

(
N∆

2

)(
N∆

2

)2 . (2.36)

Portanto, nesse intervalo, voltamos a função sin2 χ
χ2 , multiplicada pelo fator N2. Os máximos principais se

dão, quando:
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∆m = mπ ⇐⇒ α =
mπ

d
(m = 0,±1,±2, ...), (2.37)

e a largura máxima dos picos principais são dadas por:

N∆

2
= ±π ⇒ ∆

2
= ± π

N
, (2.38)

sendo da ordem de λ
Nd , portanto N vezes menor que a espaçamento dos máximos principais. Decorrendo

que quanto maior N , mais estreitos e de�nidos os picos se tornam. Isso pode ser visto no grá�co da �gura

(2.5), no qual é feito a comparação entre um grá�co gerado com 10 fendas difratantes e com 100 fendas.

A intensidade I(α)
I1(α) referente a equação (2.35), analogamente como na intensidade da equação (2.32), é

modulado por N2 · sin2X
X2 . O grá�co da �gura (2.6) ilustra essa modulação.

Figura 2.5: Grá�co mostrando a relação entre o número de fendas e os picos obtidos.

Fonte: O autor.
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Figura 2.6: Grá�co evidenciando a modulação causada no fator de interferência para N fendas.

Fonte: O autor.
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2.4 Difração de raios X

A rede de difração descrita na seção (2.3.4) é unidimensional, isto é, a periodicidade dos elementos

da rede se repete ao longo de uma única direção. No caso de uma rede bidimensional, ela é de�nida como

uma estrutura periódica em duas direções diferentes, sendo duas redes unidimensionais cruzadas como uma

cortina de gaze um exemplo típico. A natureza nos fornece estruturas com periodicidade tridimensional: os

cristais. Entretanto, como o espaçamento dos elementos da rede de um cristal são da ordem de Angstrons

(10−10m), torna-se necessário utilizar radiação eletromagnética com comprimento de onda dessa magnitude

para observar o fenômeno de difração. A radiação com comprimento de onda dessa ordem é conhecida como

sendo os raios X (NUSSENZVEIG, 2014).

2.4.1 Cristalogra�a

Podemos encontrar cristais em qualquer lugar na natureza. Em formações rochosas eles são parti-

cularmente abundantes como minerais, porém, podem ser encontrados em �ocos de neve. As faces planas

dos minérios, além dos padrões hexagonais dos �ocos de neve, foram evidências para acreditar que havia um

ordenamento interno de padrões ou arranjos como os de �blocos de construção�. Contudo, a forma e escala

desses blocos, bem como sua natureza eram desconhecidos (SCHNEEGANS, 2014).

Johannes Kepler foi o primeiro a tentar relacionar o formato macroscópio de um cristal com sua

estrutura interna. Em 1611 ele escreveu possivelmente o primeiro tratado em cristalogra�a geométrica com o

título de �Um Presente de Ano Novo ou o Floco de Neve de Seis Lados3�. Nesse trabalho, ele especula o porque

de os �ocos de neve sempre possuírem seis lados, nunca mais ou menos. Kepler sugere que os �ocos de neve

são constituídos de pequenas esferas, mostrando em seguida como o empacotamento dessas esferas gerariam

uma �gura de seis lados. Entretanto ele não foi capaz de resolver o problema do porquê as seis pontas se

rami�cam gerando vários padrões, e também não estendeu suas ideias para outros materiais(HAMMOND,

2009).

Foram com os trabalhos independentes de Ludwig Seeber em 1824, e de Gabriel Delafosse em 1840,

que surgi o conceito de rede espacial, na qual um cristal é melhor representado por um arranjo de pon-

tos discretos originados por operações translacionais. Em 1850 foi August Bravais que mostrou todas as

possíveis 14 simetrias de rede, sendo conhecidas como as famosas redes de Bravais. Posteriormente, em

1891, com todas as operações de simetrias catalogadas por Arthur Shoen�ies e Evgraf Fedorov, foi mostrado

que com essas operações de simetria sobre as 14 possíveis redes de Bravais existiam 230 possíveis grupos

espaciais(HAMMOND, 2009)(NATURE, 2014).

Por um bom tempo não houve maneiras para validar essas noções de grupos espaciais e redes espaciais.

Foi somente com Max von Laue e os Braggs, através de experimentos de difração de raios X, que foi possível

então veri�cá-los. A descoberta no começo do século 20 de que os raios X poderiam ser utilizados para �ver�

a estrutura da matéria de forma não destrutiva marca o nascimento da cristalogra�a moderna(HAMMOND,

2009).

2.4.1.1 Rede

É conveniente descrever um cristal a partir de sua periodicidade translacional levando em consideração

a geometria da repetição. Para o caso em que o padrão possui periodicidade a, b e c ao longo de três direções

não coplanares, pode-se descrever totalmente a geometria da repetição por uma sequência periódica de pontos,

3Tradução livre de: A New Year's Gift or the Six-Cornered Snow�ake.
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separadas por intervalos a, b, c ao longo dessas três direções. A essa coleção de pontos se da o nome de rede.

Uma rede bidimensional pode ser vista na �gura (2.7 a) (GIACOVAZZO et al., 1992).

Figura 2.7: Redes bidimensionais. (a) Rede bidimensional. (b) Rede bidimensional ilustrando o fato de que
os vetores da base podem ser tomados arbitrariamente. (c) uma célula unitária primitiva que não re�ete a
simetria retangular da rede. (d) O ponto P é descrito por múltiplos não inteiros dos vetores da a′′′1 e a′′′2 .

Fonte: adaptado de (ALS-NIELSEN, 2011).

Tomando um ponto arbitrário da rede 2D como origem, pode-se descrever unicamente a posição de

qualquer outro ponto da rede de forma:

Rn = n1a1 + n2a2, (2.39)

em que n1 e n2 são inteiros. Os vetores a1 e a2 de�nem um paralelogramo ao qual se da o nome de célula

unitária, sendo chamados de vetores de base da célula unitária. A escolha desses 2 vetores é arbitrária, como

pode ser visto na �gura (2.7 b), em que a área de�nida é o dobro de a). Para o caso da �gura (2.7 d)

apesar de os pontos da rede ainda satisfazerem a condição da equação (2.39), os valores de n1 e n2 não serão

inteiros. Por exemplo, o ponto P é relacionado com os vetores de base e com a origem da seguinte forma

(n1, n2) = (1
2 ,

1
2 ) (GIACOVAZZO et al., 1992).

Pode-se caracterizar a célula unitária a partir do número de pontos da rede que pertencem a ela.

Os pontos que estão nos lados e no vértice são partilhadas entre seus vizinhos, de forma que para uma rede

2D temos que um ponto do vértice é partilhado por 4 células, e um ponto em um dos lados por 2. Células

unitárias que contenham apenas um ponto da rede em seu interior recebem o nome de primitivas. Quando

uma célula não é primitiva temos que os números escalares que multiplicam os vetores da base serão racionais.

Uma maneira fácil de ver quantos pontos da rede são contidos por uma célula unitária é transladar um pouco

a rede, como mostrado pelas linhas pontilhadas na �gura (2.7) (GIACOVAZZO et al., 1992).

Trabalhar com células primitivas pode parecer desejável, já que ela parece oferecer a melhor possibili-

dade para minimizar possíveis ambiguidades. Mas o que ocorre na prática é que em varias situações trabalhar
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com célula não primitivas é mais conveniente, pois em geral a visualização da estrutura se torna mais fácil.

A célula unitária mais comum para uma determinada estrutura é chamada de célula unitária convencional.

Por exemplo, na �gura (2.7 c) vemos que de fato se trata de uma célula unitária primitiva, porém ela não

re�ete a simetria retangular apresentada pela rede (ALS-NIELSEN, 2011).

As considerações feitas anteriormente podem ser estendidas para uma rede tridimensional, em que a

rede é de�nida por um conjunto de vetores da seguinte maneira (ALS-NIELSEN, 2011):

Rn = n1a1 + n2a2 + n3a3. (2.40)

Além da simetria de translação, uma rede possui simetria de rotação e re�exão, ou ainda simetrias

compostas de translação com rotação/re�exão. Redes que tem a propriedade de que cada um de seus pontos

são idênticos, são associadas a Auguste Bravais. Bravais mostrou que existem 5 tipos de redes bidimensionais

consistentes com a equação (2.39), e que para redes tridimensionais existem 14, analogamente consistentes

com a equação (2.40) (ALS-NIELSEN, 2011).

Podemos de�nir a rede matematicamente a partir de funções delta. Por exemplo, uma rede unidi-

mensional com período a pode ser representada por (GIACOVAZZO et al., 1992):

L(x) =

+∞∑
n=−∞

δ(x− xn), (2.41)

em que δ(x− xn) é a função delta de Dirac, no qual xn = na com n um inteiro. Dessa forma L(x) é 0 exceto

em x = na. De forma análoga, uma rede tridimensional de�nida pelos vetores unitários a1,a2,a3 pode ser

descrita por:

L(r) =

+∞∑
n1,n2,n3=−∞

δ(r− rn1,n2,n3
), (2.42)

tal que rn1,n2,n3
= n1a1+n2a2+n3a3, e n1, n2, n3 são valores inteiros. A partir dos três vetores de base de�ni-

se um paralelepípedo também nomeado de célula unitária, mostrado na �gura (2.8). As direções de�nidas

por a1, a2, e a3 são os eixos cristalográ�cos X, Y, Z, respectivamente. Os ângulos entre os vetores são α, β,

e γ, em que α é oposto a a1, β é oposto a a2, e γ é oposto a a3, como visto na �gura (2.8). Pode-se calcular

o volume da célula unitária a partir do produto misto entre os vetores da base, da forma:

V = a1 · a2 × a3 (2.43)

De foma análoga ao caso 2D, se a célula escolhida também for primitiva tem-se que os escalares n1,

n2, e n3 são restringidos a serem inteiros para todos os pontos da rede. Para caracterizar a rede deve-se

tomar os pontos do vértice com apenas 1
8 pertencendo a célula, na borda correspondendo a 1

4 e em uma face

a 1
2 . As redes que existem no espaço real ocupados pelo cristal são chamadas de rede direta para diferenciar

de redes de�nidas em outros espaços.

2.4.1.2 Base

Para descrever completamente a estrutura de um cristal é necessário associar uma �base�, i.e., um

conjunto de átomos ou moléculas com cada ponto da rede. A construção matemática de um cristal é feita

a partir da convolução entre a base de átomos e a rede. Representando o cristal pela função C(r), L(r)

de�nida na equação (2.42) descreve a rede, e B(r) descreve a base. Pelo teorema da convolução temos que
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Figura 2.8: Célula unitária tridimensional mostrando os vetores da base juntamente com os ângulos entre
eles.

Fonte: (WILLMOT, 2011).

(ALS-NIELSEN, 2011):

L(r)⊗B(r) =

∫ ∞
−∞

L(r1)B(r− r1)dr1 =

∫ ∞
−∞

+∞∑
n1,n2,n3=−∞

δ(r1 − rn1,n2,n3
)B(r− r1)dr1

L(r)⊗B(r) =

+∞∑
n1,n2,n3=−∞

∫ ∞
−∞

δ(r1 − rn1,n2,n3)B(r− r1)dr1 =

+∞∑
n1,n2,n3=−∞

B(r− rn1,n2,n3).

C(r) = L(r)⊗B(r) =

+∞∑
n1,n2,n3=−∞

B(r− rn1,n2,n3) (2.44)

Uma imagem que ilustra o processo de convolução entre a base e a rede para descrever um cristal é

mostrado na �gura (2.9). Ao combinar as possíveis simetrias da base com as da rede obtém-se um total de

230 possibilidades para a estrutura do cristal, que recebem o nome de grupos espaciais.

Figura 2.9: Convolução entre a base de átomos e a rede formando um cristal.

Fonte: (WILLMOT, 2011).

2.4.1.3 Planos cristalográ�cos

Quando um experimento de difração de raios X é realizado para uma amostra cristalina, estamos

interessados no espalhamento dos átomos que podem ser entendidos como famílias de planos. Portanto ter
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uma maneira para especi�car as famílias de planos dentro de um cristal é de suma importância. A maneira

mais conveniente de realizar essa tarefa é através dos índices de Miller. Os índices de Miller para uma família

de planos descrita por (h, k, l) são de�nidos de forma que o plano mais próximo a origem tem intersecções

(a1h ,
a2
k ,

a3
l ) com os eixos (a1,a2,a3). A �gura (2.10) mostra a de�nição de alguns planos (ALS-NIELSEN,

2011).

Figura 2.10: Planos cristalográ�cos de�nidos através dos índices de Miller.

Fonte: (WILLMOT, 2011).

Para uma dada família de planos, os planos são igualmente espaçados, o que possibilita de�nir o

espaçamento dhkl para cada uma das famílias, que pode ser calculado da seguinte forma (WILLMOT, 2011):

dhkl =

√
1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ√(

h
a1

)2

sin2 α+
(
k
a2

)2

sin2 β +
(
l
a3

)2

sin2 γ − c1 − c2 − c3
, (2.45)

em que

c1 =
2kl

a2a3
(cosα− cosβ cos γ) ; c2 =

2lh

a1a3
(cosβ − cos γ cosα) ; c3 =

2hk

a1a2
(cos γ − cosα cosβ). (2.46)

A equação (2.45) se torna bastante trivial para redes com alta simetria, como ortorrômbicas, tetra-

gonais, e cubicas, nas quais α = β = γ = 90◦. Via de regra, as distâncias interplanares diminuem conforme o

índice de Miller aumenta, o contrário ocorre com a densidade de pontos no plano que decresce, de forma que

o número de pontos por unidade de área �ca reduzido. A �gura (2.11) mostra esquematicamente a distância

25



interplanar para um cristal bidimensional.

Figura 2.11: Famílias de planos em uma rede bidimensional evidenciando a distância dhkl.

Fonte: (WILLMOT, 2011).

2.4.1.4 Rede recíproca

A rede recíproca introduzida por P. Ewald em 1921 é muito útil para descrever a geometria de

difração. A partir dos vetores da base a1, a2, e a3 referentes a rede direta, podemos de�nir uma segunda rede

recíproca a essa. Os vetores da rede recíproca a∗1, a∗2, e a∗3 são de�nidos de maneira a satisfazer a seguinte

condição (GIACOVAZZO et al., 1992) (ALS-NIELSEN, 2011):

ai · a∗j = 2πδij , (2.47)

em que δij é o delta de Kronecker, de�nido de forma que δij = 1 caso i = j e 0 se i 6= j. A equação (2.47)

sugere que o vetor a∗1 é normal ao plano de�nido por (a2, a3), a∗2 ao plano (a1, a3), e a∗3 ao plano (a1, a2). O

modulo e direção de a∗1, a∗2, e a∗3 são de�nidos pelo caso em que i = j na equação (2.47). Podemos encontrar

outra expressão para os vetores da seguinte forma (GIACOVAZZO et al., 1992):

a∗1 = p(a2 × a3), (2.48)

tal que p é uma constante, e seu valor pode ser obtido ao tomar o produto escalar por a1 nos dois lados da

equação (2.48):

a∗1 · a1 = 2π = p(a2 × a3 · a1) = pV (2.49)

portanto:

p =
2π

V
. (2.50)

De forma análoga a de�nição feita para a∗1 podemos descrever os vetores da rede recíproca como:
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a∗1 =
2π(a2 × a3)

V
, a∗2 =

2π(a1 × a3)

V
, a∗3 =

2π(a1 × a2)

V
, (2.51)

com respeito ao módulo, temos:

a∗1 =
bc sinα

V
, a∗2 =

ac sinβ

V
, a∗3 =

ab sin γ

V
. (2.52)

Para o caso unidimensional, a construção da rede recíproca é bastante simples, como a1 ·a∗1 = a1a
∗
1 =

2π, e portanto a∗1 = 2π
a1
. Para o caso bidimensional, o cálculo de a∗1 e a∗2 pode ser feito de�nindo quatro

parâmetros α, β, δ, γ em um sistema de coordenadas apropriado, de forma que a∗1 = (α, β) e a∗1 = (δ, γ), e a

substituição na equação (2.47) gera 4 equações. Para o caso tridimensional se torna mais conveniente usar

a de�nição dada pela equação (2.51). Na �gura (2.12) é possível ver a comparação entre a rede direta e

sua recíproca para o caso de 1, 2 e 3 dimensões. Caso a rede direta não seja ortogonal, os vetores da rede

recíproca e da rede direta não são necessariamente paralelos, esse caso pode ser visto para rede hexagonal

2D.

A equação (2.47) insinua que as funções da rede recíproca e da rede direta podem ser trocadas, isto

é, o recíproco da rede recíproca é a rede direta. Assim, temos que (GIACOVAZZO et al., 1992):

a1 =
2π(a∗2 × a∗3)

V ∗
, a2 =

2π(a∗1 × a∗3)

V ∗
, a3 =

2π(a∗1 × a∗2)

V ∗
, (2.53)

em que V ∗ é o volume da célula da rede recíproca calculado por V ∗ = a∗1 · a∗2 × a∗3.

27



Figura 2.12: Comparação entre rede real e rede recíproca para uma, duas, e três dimensões.

Fonte: Adaptado de (ALS-NIELSEN, 2011).

Os pontos da rede recíproca são de�nidos por um vetor do tipo:

Ghkl = ha∗1 + ka∗2 + la∗3, (2.54)

no qual hkl são os índices de Miller referente a uma família de planos, portanto todos inteiros. O vetor Ghkl

possui a propriedade de ser normal a família de planos (hkl). Na �gura (2.13) está representado um plano

(hkl) com os vetores v1 e v2 dados por (ALS-NIELSEN, 2011):
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V1 =
a3

l
− a1

h
; V2 =

a1

h
− a2

k
. (2.55)

Figura 2.13: Plano cristalográ�co evidenciando que o vetor G é perpendicular a essa família.

Fonte: (ALS-NIELSEN, 2011).

Um ponto no plano pode ser descrito pela combinação linear dos vetores v1 e v2, de forma que

v = λ1v1 + λ2v2. De acordo com a equação (2.54) temos que o produto escalar entre G e v é dado por:

G · v = (ha∗1, ka
∗
2, la

∗
3) ·
(

(λ2 − λ1)
a1

h
− λ2

a2

k
+ λ1

a3

l

)
= 2π(λ2 − λ1 − λ2 + λ1) = 0. (2.56)

Portanto, como G · v = 0 temos que Ghkl é normal ao plano (hkl). Podemos também obter uma

relação entre o espaçamento dhkl e o vetor Ghkl. Como o espaçamento do plano dhkl representa a distância

da origem até o plano, que está na direção de Ĝhkl, temos que a projeção de qualquer vetor que conecte a

origem ao plano com Ĝhkl irá descrever dhkl. Usando essas considerações temos:

dhkl =
a1

h
· Ghkl

|Ghkl|
=

2π

|Ghkl|
(2.57)

e assim:

dhkl =
2π

|Ghkl|
. (2.58)

2.4.2 Espalhamento por uma nuvem de elétrons livres

Pode-se descrever as propriedades ópticas dos materiais para fótons com energia acima de 30 eV

através do fator de espalhamento atômico, também chamado de fator de forma atômica. Para as energias de

fótons de interesse, os elétrons são os principais elementos espalhadores, e um átomo não irá agir como um

espalhador pontual, mas sim espalhar por um volume ocupado pela nuvem eletrônica que envolve o núcleo.

A amplitude observada em uma direção qualquer, a um ângulo 2θ com relação ao feixe incidente, será o vetor

soma das amplitudes referente a cada elemento espalhador na nuvem eletrônica, como é mostrado na �gura

(2.14) (WILLMOT, 2011).
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Figura 2.14: Espalhamento elástico por uma nuvem de elétrons em volta de um átomo. (a) ondas espalhadas
com diferentes amplitudes e fase. (b) vetor espalhamento Q descrito como a diferença vetorial de ki e kf .

Fonte: Adaptado de (ALS-NIELSEN, 2011).

O vetor Q é conhecido como vetor de espalhamento, visto na �gura (2.14 b), sendo que ~Q corresponde

a transferência de momento transferida ao fóton espalhado. Q é calculado pela diferença entre vetor de onda

incidente ki e o vetor de onda difratado kf , de forma que (WILLMOT, 2011):

Q = ki − kf , (2.59)

e sua norma dada por:

Q =
4π

λ
sin θ. (2.60)

Pela abordagem clássica, os elétrons atômicos são vistos como uma nuvem carregada envolvendo o

núcleo, com densidade eletrônica ρ(r). Assim, a carga em um elemento de volume dr na posição r é −eρ(r)dr,

e a integral ρ(r) é igual ao número total de elétrons no átomo. Portanto para encontrar uma expressão para

a amplitude do espalhamento, devemos ponderar a contribuição em dr pelo fator eiQ·r, e depois integrar em

dr, da seguinte maneira (ALS-NIELSEN, 2011):

f0(Q) =

∫
ρ(r)eiQ·rdr

Z para Q→ 0

0 para Q→∞
. (2.61)

O fator de espalhamento atômico f descreve a amplitude de espalhamento de um átomo, sendo ex-

pressa por unidades de amplitudes de espalhamento de um único elétron. Além disso decai monotonicamente

com o aumento de Q. Para o caso em que a direção de incidência coincide com a de observação, temos que

a amplitude de espalhamento será simplesmente o número atômico Z, já que todos os objetos difratantes

espalham em fase. Para o limite em que Q é muito grande, o fator de fase entre os elementos de carga
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(ρ(r)) irá variar rapidamente, resultando em uma interferência destrutiva. Dessa forma a integral, mesmo

ponderada pela variação lenta de ρ(r), irá tender a 0. Vale ressaltar que a amplitude total de f para um

átomo é a soma da parte dependente de Q (f0) com os fatores de correção de dispersão dependentes apenas

da energia f ′ + if ′′, que se originam pelo fato de os elétrons estarem ligados a um átomo.

2.4.3 Espalhamento por um cristal

Para um material cristalino, composto por átomos, podemos escrever a amplitude de espalhamento

da forma (ALS-NIELSEN, 2011):

Fcristal(Q) =

N átomos∑
l

fl(Q)eiQ·rl , (2.62)

em que fl(Q) é o fator de forma atômica de�nido na equação (2.61) do átomo que está na posição rl. Pela

periodicidade do cristal temos que rl = Rn + rj , tal que Rn é um vetor da rede e rj é a posição do j-ésimo

átomo dentro da uma célula unitária. Assim, podemos decompor o somatório da equação (2.62) da seguinte

forma:

Fcristal(Q) =

N átomos∑
l

fl(Q)eiQ·(Rn+rj) =

Rede︷ ︸︸ ︷∑
n

eiQ·Rn

Base︷ ︸︸ ︷∑
j

fj(Q)eiQ·rj . (2.63)

Portanto, a partir dessa abordagem é possível separar a componente da somatória referente a rede,

descrita pelo primeiro termo, e a segunda componente referente a base de átomos, chamado de fator de

estrutura de célula unitária

Fcel.u.(Q) =
∑
j

fj(Q)eiQ·rj . (2.64)

2.4.4 Condição de difração de Bragg

William Henry Bragg e seu �lho William Lawrence Bragg explicaram o padrão dos picos de difração

de raios X através de sua conhecida equação que leva seus nomes: a lei de Bragg. Para obter a lei de Bragg

em geral se parte de um desenho esquemático como mostrado na �gura (2.15). Consideramos um feixe de

raios X incidindo com ângulo de θ sobre o plano da superfície da amostra com vetor de onda ki, gerando um

feixe de onda espalhado com vetor de onda kf . Como o espalhamento é elástico temos que |ki| = |kf | = 2π
λ .

Seja d a distância interplanar entre a família de planos (hkl), temos que a diferença de caminho percorrida

pelos feixes é de 2d sin θ. Dessa forma para ocorrer interferência construtiva a diferença de caminho deve ser

um múltiplo inteiro do comprimento de onda, e temos que (WILLMOT, 2011):

mbλ = 2d sin θ, (2.65)

que é a lei de Bragg, com mb um inteiro.

A conclusão mais importante que decorre dessa lei é a de que quando a equação (2.65) é satisfeita,

temos que o vetor espalhamento Q, de�nido pela equação (2.59), é perpendicular aos planos que estão em

condição de difração de Bragg. Esse fato é mostrado na �gura (2.15). Além disso, sempre que a condição de

difração é satisfeita, o vetor Q tem sua base na origem do espaço recíproco (000), terminando em um ponto
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Figura 2.15: A lei de Bragg descreve a difração da radiação elasticamente espalhada por uma família de planos
atômicos, que possuem distância dhkl. Para a condição ser satisfeita, a diferença entre os feixes difratados
adjacentes deve ser um multiplo inteiro do comprimento de onda. O Vetor Q é a diferença vetorial entre o
feixe incidente e o feixe difratado.

Fonte: Adaptado de (ALS-NIELSEN, 2011).

(hkl) referente à família de planos que está satisfazendo a condição de difração, como mostrado na seção

(2.4.8).

2.4.5 Condição de difração de Laue

O número de termos referente ao somatório da rede é enorme, podendo ser estimado para um pequeno

cristalito de 1 µm3, ser da ordem de 1012 vezes o volume da célula unitária ou mais. Cada um dos termos é

um número complexo de fase eiφn localizado em algum lugar do círculo unitário. A soma dos fatores de fase

é da ordem da unidade, exceto para o caso em que as fases são múltiplos de 2π, resultando em uma soma

da ordem de �N� células unitárias. Para satisfazer a condição temos que a contribuição da rede da equação

(2.63) deve espalhar em fase, para isso (ALS-NIELSEN, 2011):

Q ·Rn = 2πmr (mr = 0,±1,±2, ...). (2.66)

É possível mostrar que o vetor Ghkl, de�nido na equação (2.54), satisfaz a condição da equação

(2.66), de forma que:

G ·Rn = (ha∗1, ka
∗
2, la

∗
3) · (n1a1, n2a2, n3a3),

G ·Rn = (hn1a
∗
1a1 + kn2a

∗
2a2 + ln3a

∗
3a3)

G ·Rn = 2π(hn1 + kn2 + ln3). (2.67)
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Como todas as variáveis dentro dos parenteses são inteiros, seus produtos também são inteiros, temos

que o resultado é um múltiplo inteiro de 2π. Portanto, se o vetor Q for igual ao vetor G o cristal irá espalhar

em fase. A condição de difração de Laue é, portanto:

Q = G. (2.68)

Um resultado importante é que a condição de difração de Bragg é na verdade o escalar da condição

de Laue, da forma |Q| = |G|. A partir das equações (2.58) e (2.60) temos que:

4π

λ
sin θ =

2π

dhkl
(2.69)

rearranjando temos:

λ = 2dhkl sin θ, (2.70)

que resulta na condição de difração de Bragg.

2.4.6 Soma da rede

Para considerar a intensidade referente a uma dada re�exão de Bragg é indispensável estimar a soma

sobre a rede, de�nida na equação (2.63), da forma:

SN (Q) =
∑
n

eiQ·Rn . (2.71)

Será abordado o caso da soma em uma, duas, e três dimensões. Como se quer encontrar uma expressão

para a intensidade, também será calculado o módulo quadrado da soma da rede, |SN (Q)|2 (ALS-NIELSEN,

2011).

2.4.6.1 Soma em uma dimensão

Para o caso de uma dimensão temos que um ponto sobre a rede pode ser descrito por Rn = na em

que n é um inteiro e a é o parâmetro de rede. A soma da equação (2.71) para uma rede unidimensional �nita

com N células unitárias se resume a (ALS-NIELSEN, 2011):

SN (Q) =

N−1∑
n=0

eiQna (2.72)

Os cálculos para uma soma geométrica como essa ja foram considerados na seção (2.3.4). Dessa

forma podemos escrever a equação (2.72) como:

|SN (Q)| =
sin
(
NQa

2

)
sin
(
Qa
2

) . (2.73)

A soma da equação (2.73) para grandes valores de N gera picos bem de�nidos sempre que o denomi-

nador se anula. Como N representa o número de células unitárias em um cristal, mesmo para um cristalito

pequeno como algumas dezenas de µ, N é um valor gigantesco já que a é da ordem de Å . A condição é

satisfeita sempre que Qa
2 = hπ, com h sendo inteiro, ou de forma explicita:
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Q = h
2π

a
= ha∗ = Gh, (2.74)

em que Gh é um vetor da rede recíproca. Como já era de se esperar, a soma da rede leva a condição de

difração de Laue. Para estudar o comportamento da equação (2.73) próximo a vizinhança de um único ponto

da rede em que a condição é quase satisfeita, será introduzido o parâmetro ε, de forma que:

Q = (h+ ε)a∗, (2.75)

assim o módulo da soma da rede é descrito por:

|SN (ε)| = sin(Nπε)

sin(πε)
→ N conforme ε→ 0. (2.76)

Podemos estimar a largura para N grande de�nindo ε = 1
2N :

|SN (ε =
1

2N
)| ≈ 1

π/(2N)
=

(
2

π

)
N ≈ N

2
. (2.77)

Assim, um pico com altura N , e largura à meia altura em torno de 1
N , temos que a área se aproxima da

unidade. No limite em que N → ∞ temos que de fato a área se torna igual a 1. Dessa forma podemos

escrever o módulo da soma da rede como:

|SN (ε)| → δ(ε), (2.78)

em que δ(ε) é a função delta de Dirac. Podemos reescrever o resultado da equação (2.78) de uma maneira

mais geral em função de Q, de forma que:

|SN (Q)| → a∗
∑
Gh

δ(Q−Gh), (2.79)

tal que a soma é tomada sobre todos os pontos da rede recíproca. A fator a∗ é devido ao fato de que

δ(Q−Gh) = δ(εa∗) = δ(ε)
a∗ .

Para experimentos de difração é interessante encontrar uma expressão para o quadrado da soma da

rede. Com argumentos similares aos dados anteriormente para a soma da rede de difração por N fendas

(2.3.4) pode-se mostrar que (ALS-NIELSEN, 2011):

|SN (Q)|2 → Na∗
∑
Gh

δ(Q−Gh). (2.80)

2.4.6.2 Soma em duas e três dimensões

No caso de uma rede bidimensional temos que os vetores da base são dados por a1 e a2. Para o caso

especial em que o cristal possui o formato de um paralelepípedo, possuindo N1 células unitárias ao longo de

a1, independente do número da linha 1, 2, . . . , N2. A partir do mesmo raciocínio utilizado para o caso 1D

temos que:

|SN (ε1, ε2)|2 → N1N2δ(ε1)δ(ε2), (2.81)

para grandes valores de N1, N2. Ou ainda:
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|SN (Q)|2 → (N1a
∗
1)(N2a

∗
2)
∑
G

δ(Q−G) = NA∗
∑
G

δ(Q−G), (2.82)

no qual G = ha∗1 +ka∗2, N = N1N2 é o número de células unitárias, e A∗ é a área da célula unitária no espaço

recíproco. Para um caso mais geral não é possível obter uma solução analítica, porém, o caráter da função

delta será mantido para qualquer formato de cristal em quanto o número de células unitárias for grande nas

duas direções.

Pode-se generalizar os resultados obtidos para o caso bidimensional para o caso tridimensional de

forma bastante direta. Novamente. para o caso geral não é possível derivar uma expressão analítica, mas

para o caso em que o cristal macroscópico é um paralelepípedo é possível. Para um número grande de células

unitárias em todas as três dimensões, temos (ALS-NIELSEN, 2011):

|SN (Q)|2 → NV ∗c
∑
G

δ(Q−G), (2.83)

tal que G = ha∗1 + ka∗2 + ka∗3, V
∗
c é o volume da célula unitária no espaço recíproco, e N é o número de

células unitárias no cristal.

2.4.7 Contribuição da base

Para avaliar a parte da base da soma da equação (2.63) consideremos a �gura (2.16). Nela, o feixe

incidente é espalhado pelas nuvens de elétrons envolvendo o núcleo dos três átomos a1, a2, e a3 da célula

unitária. A amplitude da ondas espalhadas sw1, sw2, e sw3 é proporcional a soma do espalhamento de

cada elétron envolvendo o átomo, i.e., o fator de espalhamento atômico, mencionado na seção (2.4.2). Além

disso, temos que a fase de cada onda espalhada depende da posição do átomo com respeito a célula unitária.

Para avaliar como as ondas espalhadas por cada átomo se soma na direção em que a condição de difração é

satisfeita, é conveniente utilizar o diagrama de Argand, mostrado na �gura (2.16). Chamamos a amplitude

total de espalhamento, calculado pela soma f1 + f2 + f3 da onda espalhada pelos átomos dentro da célula

unitária de fator de estrutura (Fhkl). Temos que a intensidade relativa a uma família de planos Ihkl é dado

pelo modulo quadrado de Fhkl (WILLMOT, 2011).

Existem casos em que o vetor espalhamento dos átomos dentro de uma célula unitária se cancelam

mutuamente para determinada re�exão, culminando em um fator de estrutura nulo. A essas re�exões em

que (Fhkl) se anula se da o nome de extinções, em geral as extinções estão relacionadas a grande simetria

por parte da amostra. Por exemplo, pode-se mostrar que o fator de estrutura de uma rede cúbica de corpo

centrado é zero se h+ k+ l for um inteiro ímpar. O fenômeno das extinções evidencia o fato de que devemos

considerar as posições e amplitude de espalhamento dos átomos entre os planos do cristal, e não apenas a o

espaçamentos entre esses planos.

2.4.8 Esfera de Ewald

Para auxiliar a visualização da condição de difração no espaço recíproco, é comum utilizar a esfera

de Ewald, ou seu análogo círculo de Ewald para o caso bidimensional. Para isso, consideremos um feixe

monocromático incidindo em uma amostra, em um espaço 2D por simplicidade. Pela condição de difração de

Laue, temos que o vetor Q tem de ser igual ao vetor de rede recíproca Ghk = ha∗1 + ka∗2 mostrado na �gura

(2.17 (a)). Temos por convenção que o vetor ki incide sobre a origem da rede recíproca, possuindo sua base

em A, como mostrado nas �guras (2.17 (b),(c)). Dessa forma, desenha-se um círculo centrado em A com raio
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Figura 2.16: (a): Feixes espalhados pelos átomo dentro de uma célula unitária. (b): Diagrama de Argand
representado a soma que culmina no fator de estrutura.

Fonte: Adaptado de (WILLMOT, 2011).

igual a |ki| = |kf | = 2π
λ �gura (2.17 (b)). Qualquer ponto da rede recíproca que tocar círculo irá satisfazer

a condição de difração de Laue, e um pico de difração será observado caso se posicione o detector na direção

de kf . Na �gura (2.17 (c)) é mostrado um exemplo em que a re�exão h = 1 e k = 2 foi escolhida para cair

sobre o círculo. Rotacionar o cristal é equivalente a rotacionar o círculo de Ewald em torno da origem O,

e assim outros pontos podem entrar em condição de difração. Podemos generalizar todas as considerações

citadas anteriormente para o caso tridimensional (ALS-NIELSEN, 2011).

Dependendo da con�guração do experimento, podem haver casos em que mais de um ponto da rede

recíproca caia sobre caia sobre o círculo de Ewald, gerando re�exões simultâneas como mostrado na �gura

(2.17 (d)). Um feixe parcialmente monocromático pode ser representado ao se permitir que o círculo de Ewald

possua uma largura �nita (∆K). Para o limite em que se incide um feixe policromático sobre a amostra,

todos as re�exões entre os limites inferior e superior de comprimento de onda serão observadas, como na

�gura (2.18).
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Figura 2.17: (a): Ponto sobre a rede recíproca h = 1, k = 2. (b): Círculo de Ewald com ki incidindo sobre
a origem e com sua base em A. (c): Círculo de Ewald escolhido para cair sobre a re�exão (12). (d): Vários
pontos da rede tocando o círculo de Ewald.

Fonte: Adaptado de (ALS-NIELSEN, 2011).

Figura 2.18: Círculo de Ewald para um feixe policromático, satisfazendo todas as condições de difração em
seu interior.

Fonte: (ALS-NIELSEN, 2011).
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3 Controle e automação do difratômetro

Em experimentos de difração de raios X mais convencionais de bancada, em que se usa um difratô-

metro de 2 círculos, a amostra é em geral mantida �xa, enquanto a fonte e o detector se movem. Já em

laboratórios de luz síncrotron não se possui a possibilidade de se mover o feixe que incide na amostra, pois

ele é gerado a partir de uma fonte síncrotron em que os elétrons são acelerados. A alternativa que se tem

nesse caso é de mover o detector e a amostra a �m de satisfazer a condição de difração.

O difratômetro de 4 círculos é um dos instrumentos mais populares para experimentos de espalha-

mento de raios X e nêutron. Entretanto, apesar de sua popularidade, ele possui um número insu�ciente de

graus de liberdade requeridos para alguns tipos de experimento XRD em síncrotrons modernos. Como por

exemplo, ter a opção de escolher a orientação do plano de espalhamento, e consequentemente a polarização

do feixe incidente. Para superar as limitações impostas pelo difratômetro de 4 círculos, os difratômetros de

5 e 6 círculos foram desenvolvidos, sendo esse último o objeto do nosso trabalho (YOU, 2000).

Como o difratômetro possui 6 círculos (4S+2D)4, e apenas 3 graus de liberdade são necessários para

determinar a orientação de um cristal, devemos restringir pelo menos 3 dos 6 graus, já que o sistema se

tornaria superdeterminado, causando inconsistências. O fato de haver graus extras de liberdade permite

várias possibilidades, como evitar ângulos cegos, e ainda que o difratômetro suporte cargas mais elevadas

sem comprometer de mais a esfera de confusão dos motores (YOU, 1999). Nas �guras (3.1) e (3.2) podemos

ver o modelo do difratômetro Huber que a linha EMA possui, assim como o desenho esquemático de um

difratômetro de 6 círculos, respectivamente.

Observando os eixos de�nidos no sistema de coordenada do laboratório mostrados na �gura (3.2)

ve-se que o eixo y é de�nido ao longo do feixe, e x é normal aos círculos µ e ν do difratômetro. Os círculos

correspondentes aos ângulos φ, χ, η, e µ, ordenado do mais interno para o mais externo, são os ângulos

responsáveis pelo movimento da amostra e δ, ν, também ordenado do mais interno para o mais externo,

realizam a movimentação de detectores. O sentido da rotação dos eixos são mostrados na �gura (3.2), vemos

que φ, η, e δ possuem rotação no sentido levogiro, enquanto χ, µ, e ν tem rotação no sentido dextrogiro.

3.1 Equação do difratômetro

Representando o vetor transferência de momento no espaço recíproco por h em um sistema de

coordenadas dextrogiro, temos (YOU, 1999):

h =

3∑
i=1

hia
∗
i , (3.1)

no qual a trinca (h1, h2, h3) é usualmente chamada de hkl, e a∗i representa os vetores da rede recíproca.

A matriz B de�nida no apêndice B, a partir dos componentes dos vetores da rede direta e recíproca

do cristal, ortonormaliza o sistema de referência cristalográ�co. De forma que a transferência de momento é

expressado no sistema de coordenadas do laboratório, assim temos:

hc = Bh. (3.2)

Agora pode-se de�nir um vetor hφ que representa a orientação do vetor hc quando a amostra é

montada no eixo φ do difratômetro com todos os círculos posicionados em 0. Para isso é necessário a matriz

4Terminologia usual para evidenciar que o difratômetro em questão possui 4 círculos de amostra e 2 de detectores.
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Figura 3.1: Desenho do difratômetro Huber.

Fonte: Linha EMA do Sirius.

Figura 3.2: Desenho esquemático de um difratômetro.

Fonte: (YOU, 1999).

de orientação U, que tem a função de de�nir o desalinhamento entre o eixo cartesiano com os eixos do sistema

de coordenadas do laboratório. E assim:

hφ = Uhc = UBh. (3.3)

Como a matriz U apenas rotaciona ou reorienta o sistema cartesiano, se trata de uma matriz ortonormal.

Algumas maneiras de obtenção dessa matriz serão discutidas posteriormente.

Seja hj de�nido como a rotação de hφ pelo j-ésimo círculo de amostra. Dessa forma, pode-se escrever
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uma relação que leva h até hM, o sistema de coordenadas do eixo mais externo de amostra (µ) (YOU, 1999)

h
B−→ hc

U−→ hφ
Φ−→ hχ

X−→ hη
H−→ hµ

M−→ hM . (3.4)

Tal que as matrizes Φ, X, H, e M, mostradas nas equações (3.5 - 3.8), são as matrizes de rotação

respectivas a seus círculos, e suas direções de rotação são mostradas na �gura (3.2). É interessante perceber

que todas as matrizes, exceto B, são ortonormais, e assim podemos usar a relação A−1 = AT em que A−1

e AT representam a matriz inversa e transposta de A respectivamente.

Φ =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 , (3.5)

X =

 cosχ 0 sinχ

0 1 0

− sinχ 0 cosχ

 , (3.6)

H =

 cos η sin η 0

− sin η cos η 0

0 0 1

 , (3.7)

M =

1 0 0

0 cosµ − sinµ

0 sinµ cosµ

 . (3.8)

A partir do movimento dos eixos de detectores (δ e ν), podemos de�nir a posição do detector no

sistema de coordenadas �xado no círculo de δ. Avaliando o sistema quando a transferência de momento é 0,

de forma que os dois ângulos de detectores são zero, logo o vetor de incidência ki é igual ao vetor difratado

kf e ambos estão na direção do eixo y. Assim, temos:

kf0 = ki =

0

k

0

 , (3.9)

no qual k é o número de onda. Podemos obter esse vetor no sistema de coordenadas do laboratório para uma

transferência de momento não nula a partir das seguintes transformações (YOU, 1999):

kf0
∆−→ kfδ

Π−→ kfν , (3.10)

tal que as matrizes de rotação ∆ e Π seguem o sentido mostrada da �gura (3.2), e são dadas por:

∆ =

 cos δ sin δ 0

− sin δ cos δ 0

0 0 1

 , (3.11)

Π =

1 0 0

0 cos ν − sin ν

0 sin ν cos ν

 , (3.12)

40



e assim temos que:

kfν = kΠ∆

0

1

0

 = k

 sin δ

cos ν cos δ

sin ν cos δ

 . (3.13)

Para satisfazer a condição de difração de Laue (G = Q), temos que hM , que descreve como G estará

no sistema de coordenadas do laboratório, tem de ser igual ao vetor de espalhamento (Q), que é determinado

pelos círculos de detectores no sistema de referência do laboratório. Para enfatizar o fato de que a orientação

do vetor depois de todas as rotações está no sistema de referência do laboratório, será introduzido o subscrito

L, a equação de difração para o difratômetro é:

hM = QL, (3.14)

tal que:

hM = MHXΦUBh = MHXΦhφ = Zhφ (3.15)

Em que Z = MHXΦ, e QL é dado por:

QL = kfν − kiL = (Π∆− I)

0

k

0

 = k

 sin δ

cos ν cos δ − 1

sin ν cos δ

 . (3.16)

Analisando as equações (3.15) vemos que hM depende apenas do eixos de orientação de amostra,

enquanto a equação (3.16) evidência que QL é descrito somente pelos eixos de orientação de detectores.

3.2 Pseudo-ângulos

Para simpli�car a geometria de espalhamento convêm de�nir, no sistema de coordenadas do labo-

ratório, ângulos que não correspondem aos ângulos reais do difratômetro, que são em geral baseados em

considerações mecânicas. Esses ângulos serão utilizados para de�nir a orientação de vetores como o vetor de

espalhamento (Q), o vetor do feixe difratado (kf ), ou o vetor de referência n. Pelo fato desses vetores não

possuírem uma correspondência direta com os ângulos reais, eles são chamados de pseudo-ângulos, alguns

dos quais são mostrados na �gura (3.3) (YOU, 1999).

O pseudo-ângulo de maior importância é o θ, de�nido pela equação de espalhamento, como (YOU,

1999):

|Q| = 2k sin θ. (3.17)

Podemos ver na �gura (3.3) que o ângulo θ de�ne o raio da esfera que intersepta a esfera de Ewald. O sistema

de coordenadas do laboratório é �xado no centro dessa esfera, e denotamos a intersecção entre ela e a esfera

de Ewald por Ck. O plano delimitado pela a intersecção Ck é normal ao feixe incidente (ki), e portanto o

ângulo de Q com respeito ao plano xz é θ. Pode-se determinar a orientação de Q de�nindo um outro ângulo

azimutal ϑ5. Os pseudo-ângulos mais fundamentais são o θ e o ϑ, já que o vetor de espalhamento Q pode

5Usualmente chamado de qaz.
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Figura 3.3: De�nição de alguns pseudo-ângulos mostrados com o vetor de espalhamento e a esfera de Ewald.

Fonte: (YOU, 1999).

ser escrito tanto em função dos pseudo-ângulos como dos ângulos reais. De forma que Q gera as seguintes

relações:

Q̂L =
QL

|QL|
=

1

2 sin θ

 sin δ

cos ν cos δ − 1

sin ν cos δ

 , (3.18)

ou ainda:

Q̂L =

cos θ sin ϑ

− sin θ

cos θ cos ϑ

 . (3.19)

Podemos obter a partir das equações (3.18) e (3.19) as expressões que seguem:

cos 2θ = cos δ cos ν, (3.20)

tan ϑ =
tan δ

sin ν
. (3.21)

Quando cos ϑ = 0, ν = 0, assim, o pseudo-ângulo qaz de�ne o ângulo azimutal do plano de espalhamento,

de forma que para qaz = π
2 o plano de espalhamento é vertical, ja que ν = 0 nesse caso, e quando qaz = 0 o

plano de espalhamento é horizontal, pois δ = 0.

De�nimos também um vetor de referência n, que em geral é tomado como sendo normal a superfície

da amostra, porém, pode ser escolhido de forma arbitrária, e temos que n′ = Qn̂ mostrado na �gura (3.3).

Tal que a representação de n do sistema de referência do laboratório se da por (YOU, 1999):
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n̂L = Zn̂φ =

cosα sinφ

− sinα

cosα cosφ

 . (3.22)

A partir da equação (3.22) podemos encontrar relações para os pseudo-ângulos α e ϕ6, assim, temos:

sinα = −n̂L · ŷL, (3.23)

tanϕ =
n̂L · x̂L
n̂L · ẑL

. (3.24)

O pseudo-ângulo τ representa o ângulo azimutal de n′ medido com respeito ao vetor espalhamento

e o plano de espalhamento, i.e, plano formado pelo feixe incidente e pelo vetor de espalhamento, assim τ é o

ângulo entre o vetor Q e o vetor referência n, calculado por:

cos τ = Q̂ · n̂. (3.25)

Quando n é de fato de�nido como a direção normal da superfície da amostra, temos que o pseudo-

ângulo α representa o ângulo de incidência. Portanto, é conveniente de�nir outro pseudo-ângulo chamado de

β, que representa o ângulo de saída, dado por:

sinβ =
kf · n
kfn

. (3.26)

Das equações (3.23) e (3.26), temos que:

sinα+ sinβ =

[
kf − ki

k

]
· n̂

sinα+ sinβ = 2 sin θ(Q̂ · n̂)

sinα+ sinβ = 2 sin θ cos τ

portanto:

sinβ = 2 sin θ cos τ − sinα. (3.27)

Para de�nir o pseudo-ângulo conhecido como ψ, comecemos por de�nir um sistema de coordenadas

no qual o vetor Q está ao longo do eixo x′ e Q× ŷ está ao longo do eixo z′. Nesse sistema o eixo z′ é

perpendicular ao plano de espalhamento. De�nimos o valor 0 do ângulo azimutal ψ, como sendo o caso em

que o vetor referência n está no plano de espalhamento próximo ao sentido positivo do eixo y′, temos que o

vetor n′ aponta para a intersecção entre os círculos CQ e CS, visto na �gura (3.3). Descrevendo os vetores

no sistema de coordenadas Q, resulta em (YOU, 1999):

k̂iQ =

− sin θ

cos θ

0

 , (3.28)

6Usualmente chamado de naz.
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k̂fQ =

sin θ

cos θ

0

 , (3.29)

n̂Q =

 cos τ

sin τ cosψ

sin τ sinψ

 . (3.30)

Podemos obter, a partir das equações (3.28 - 3.30), a descrição do ângulo de incidência e saída em

função de ψ, como:

sinα = −k̂iQ · n̂Q = cos τ sin θ − cos θ sin τ cosψ, (3.31)

sinβ = k̂fQ · n̂Q = cos τ sin θ + cos θ sin τ cosψ, (3.32)

por �m, obtemos ψ das seguintes formas:

cosψ =
cos τ sin θ − sinα

sin τ cos θ
, (3.33)

cosψ =
− cos τ sin θ + sinβ

sin τ cos θ
. (3.34)

Um modo bastante comum em um difratômetro de 4 círculos (3S + 1D) é o chamado ω = 0 ou

modo do bisseccionamento. Nele, Q é paralelo ao plano do círculo do χ. Para um difratômetro de 6 círculos

esse modo pode pode ser reproduzido tanto para o plano de espalhamento na vertical (qaz = 90◦) como na

horizontal (qaz = 0◦) tomando η = δ
2 e µ = ν

2 , respectivamente. Entretanto, por se tratar de um difratômetro

de 6 círculos ainda existe outro grau de liberdade que deve ser restringido, dessa forma é de�nido o pseudo-

ângulo ω como sendo o ângulo entre Q em relação ao plano do círculo do χ. Como o eixo do círculo do χ

está ao longo de ŷ quando η = µ = 0, temos a relação Q̂ · (MHŷ) = cos(ω + π
2 ), disso temos que (YOU,

1999):

(sin η sin ϑ + sinµ sin η cos ϑ)− (cosµ cos η) sin θ = sinω. (3.35)

com isso é �nalizado o cálculo dos pseudo-ângulos relevantes, levando em consideração apenas os ângulos

reais de motores.

3.3 Cálculo da matriz de orientação

Existem algumas formas de se calcular a matriz U, podendo ser a partir de duas re�exões, caso se

conheça os parâmetros de rede da amostra, já que é necessário a matriz B para esse cálculo. Para o caso

em que os parâmetros de rede não são conhecidos, é possível obter U a partir de três re�exões. Com essa

abordagem, além da matriz de orientação, é possível também obter os parâmetros de rede da amostra. Uma

outra maneira de obtenção da U, que não será discutida aqui, se baseia em um processo de re�namento,

em que varias re�exões são utilizadas, a �m de realizar um processo de mínimos-quadrados para re�nar os

parâmetros de rede e orientação simultaneamente (BUSING; LEVY, 1967).
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3.3.1 Calculo de U a partir de 2 re�exões

Através da equação do difratômetro de�nida pela equação (3.14), podemos obter um versor uφ,

descrito no sistemas de coordenadas φ na direção de hφ, a partir das equações (3.14), (3.15), (3.18), da

seguinte forma (YOU, 1999)(BUSING; LEVY, 1967):

uφ = ΦTXTHTMT Q̂L, (3.36)

em que o fato das matrizes de rotação serem ortogonais foi utilizado para considerar a transposta em vez

da matriz inversa no cálculo. A partir dessa abordagem, podemos de�nir dois vetores unitários u1φ e u2φ,

obtidos a partir da primeira e segunda re�exão, respectivamente.

Assumindo que os parâmetros de rede da amostra já são conhecidos, podemos calcular os vetores

espalhamento no sistema de referência cartesiano do cristal para cada uma das re�exões, da forma:

h1c = Bh1

h2c = Bh2

}
, (3.37)

de forma que, idealmente, a matriz B deveria realizar a seguinte transformação:

h1φ = Uh1c

h2φ = Uh2c

}
. (3.38)

Portanto u1φ e u2φ estariam na direção de h1φ e h2φ, respectivamente. Contudo isso não acontece na

realidade, já que existem erros experimentais na medição dos ângulos, e incertezas associadas aos parâmetros

de rede. Dessa forma, não é possível na prática encontrar uma matriz U que satisfaça às duas condições

impostas pela equação (3.38). O que basicamente signi�ca que o ângulo subtendido por h1c e h2c di�ram do

subtendido por u1φ e u2φ, respectivamente.

Para prosseguir com o cálculo, evitando a di�culdade imposta pelos erros experimentais, será utilizado

a seguinte abordagem. Primeiramente forcemos que h1φ tenha a mesma direção de u1φ, igual de�nido

anteriormente, porém, h2φ só será restringido a estar no plano de�nido pelos vetores h1φ e h2φ. Logo,

a primeira re�exão de�ne a direção de um vetor do cristal, enquanto a segunda determina um ângulo de

rotação em torno desse vetor.

De�nindo três vetores unitários t1c, t2c, e t3c em um sistema ortogonal dextrogiro no sistema de

coordenadas cartesiano do cristal, de forma que t1c seja paralelo a h1c, t2c é restringido a estar no plano

de�nido pelos vetores h1c e h1c, e t3c é perpendicular a esse plano. De forma análoga de�nimos outra trinca

t1φ, t2φ, e t3φ porém no sistema de coordenadas φ, baseados agora, nos vetores u1φ e u2φ. A matriz U deve

satisfazer as seguintes equações (BUSING; LEVY, 1967):

tnφ = Utnc ; n = 1, 2, 3. (3.39)

De�nindo a matriz Tc, com suas colunas compostas pelos vetores t1c, t2c, e t3c, e, analogamente, a

matriz Tφ, com suas colunas compostas pelos vetores t1φ, t2φ, e t3φ, podemos escrever as 3 equações vetoriais

da equação (3.39) em apenas uma equação matricial, da forma:

Tφ = UTc, (3.40)

e assim:
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U = TφT
−1
c = TφT

T
c . (3.41)

Já que pode ser mostrado que Tc é uma matriz ortogonal.

3.3.2 Calculo de U a partir de 3 re�exões

Quando não temos informações sobre o parâmetro de rede da amostra torna-se necessário a informa-

ção de mais uma re�exão para o calculo de U. Para µi, ηi, χi, φi, νi, δi, e 2θi referente a re�exão i, podemos

calcular ui a partir da equação (3.36), e assim calcular o vetor espalhamento no sistema de coordenadas φ

hiφ =
2 sin θi
λ

uiφ. (3.42)

Pela equação (3.42) vemos que energia em que o experimento foi realizado também é levada em

consideração (λ). Para cada uma das três re�exões a matriz UB deve realizar as transformação a seguir:

hiφ = UBhi, (3.43)

em que hi é simplesmente o vetor de índices (hkl). De�nindo a matriz Hφ, que possui suas colunas compostas

pelos vetores colunas h1φ, h2φ, e h3φ, e a matriz H construída de forma análoga a partir dos vetores coluna

hi, podemos escrever a seguinte equação matricial (BUSING; LEVY, 1967):

Hφ = UBH. (3.44)

E assim, calculamos UB da seguinte forma:

UB = HφH
−1. (3.45)

Deve-se tomar cuidado ao selecionar as re�exões para que os vetores da rede recíproca não sejam

coplanares, caso contrário a matriz H será singular. Após obtermos UB podemos prosseguir e calcular os

parâmetros de rede a partir dela. Temos que:

(UB)
T

(UB) = (B)
T

(U)
T

(U)(B) = BTB. (3.46)

Pode-se mostrar que:

BTB = G−1, (3.47)

tal que G−1 representa o tensor métrico do espaço recíproco, discutido no apêndice A, com seus elementos

dados por:

(G−1)ij = a∗i · a∗j . (3.48)

Portanto, G é o tensor métrico mostrado no apêndice A, com elementos:

(G)ij = ai · aj . (3.49)

Podemos obter os parâmetros de rede a partir da equação (3.49) considerando os elementos da

diagonal principal, temos que:
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ai =
√

Gii, (3.50)

enquanto os ângulos são obtidos através dos demais elementos da matriz, como:

cosαi =
Gjk

ajak
; i 6= j 6= k 6= i. (3.51)

Com os parâmetros de rede calculados, podemos calcular a matriz B da maneira descrita no apêndice B, e,

por �m, obtemos U da seguinte forma:

U = (UB)B−1. (3.52)

3.4 Modos de operação

Como já citado anteriormente, o difratômetro possui 6 graus de liberdade e para determinação da

amostra no sistema de coordenadas do laboratório são necessários apenas 3, portanto os 3 ângulos restantes

precisam ser restringidos. Pelo fato de existirem esses graus extras de liberdade, existem muitos modos de

operação possíveis para o difratômetro, muito mais do que para o difratômetro de 4 círculos (YOU, 1999).

Uma maneira bastante conveniente de sumarizar esses modos é mostrada na tabela (1), na qual a primeira

coluna faz referência aos ângulos de detectores e alguns pseudo-ângulos, na segunda coluna estão presentes

apenas pseudo-ângulos, as demais colunas são basicamente compostos por eixos de amostra, exceto pelo

pseudo-ângulo omega referente ao valor 0 da terceira coluna.

Tabela 1: Modos de operação de um difratômetro de 6 círculos.

detector Reference Sample Sample Sample

0 . . omega-�xed X X 0

1 Delta-�xed Alpha=Beta Eta-�xed Eta-�xed Eta-�xed 1

2 Nu-�xed Alpha-�xed Mu-�xed Mu-�xed Mu-�xed 2

3 Qaz-�xed Beta-�xed Chi-�xed Chi-�xed Chi-�xed 3

4 Naz-�xed Psi-�xed Phi-�xed Phi-�xed Phi-�xed 4

5 X X Eta=Del/2 X X 5

6 X X Mu=Nu/2 X X 6

Fonte: Adaptado de (YOU, 1999).

Para cada modo de operação será necessário fornecer no mínimo 3 das 5 colunas disponíveis, e apenas

um ângulo de cada coluna deve ser escolhido. Isso deve ser feito de forma que não se escolha mais de uma

vez um ângulo de amostra que se repete nas colunas 3, 4, e 5. Portanto, caso o modo 21500 seja escolhido,

signi�ca que as restrições impostas serão: nu �xo, alfa = beta, e eta = delta

2 , para o modo 20520 nu �xo, eta

= delta

2 , mu �xo, e assim por diante.

Cada modo de operação pode ser interessante para um tipo determinado de experimento. Por

exemplo, quando o ângulo alfa representa o ângulo de incidência do feixe com relação a superfície da amostra,

�xar ele em um ângulo baixo pode ser interessante para experimentos de difração em �lmes �nos. Pode-se

também utilizar um modo de operação para emular um difratômetro de 4 círculos. As possibilidades de

modos de operação são enormes, e devem ser escolhidas com base no que se pretende estudar.
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4 Mapeamento do espaço recíproco

Para a análise dos dados gerados por um experimento de difração de raios X, utiliza-se a abordagem de

plotá-los em grá�cos. Dependendo do tipo de experimento realizado, ou do tipo de análise que se queira fazer,

diferentes abordagens para visualização de dados devem ser utilizadas, podendo ser utilizados grá�cos de uma,

duas, ou três dimensões. A escolha do tipo de grá�co que será utilizado dependerá de um compromisso entre

o que se procura sondar e o detector/técnica disponível. Nesse trabalho estamos interessados na reconstrução

tridimensional do espaço recíproco, que é uma evolução do método mais tradicional de análise 2D, usando

como base para isso a linguagem de programação Python.

Existem basicamente três tipos de detectores, sendo eles: pontual, linear, e de área. O detetor

pontual é, em geral, utilizado para gerar grá�cos de uma dimensão, porém, não excluindo a possibilidade do

mesmo de gerar grá�cos 2D, ou até mesmo, a priori, 3D. Entretanto a quantidade de tempo seria bastante

dispendiosa, podendo demorar varias horas para o mapeamento. O detetor linear é comumente utilizado

para gerar grá�cos 2D de forma bastante e�ciente, já que para isso basta �varrer� o espaço em apenas uma

direção, gerando assim uma área de intensidades. Além de mapeamentos 2D ele pode fazer mapeamentos

pontuais, ao selecionar uma região de interesse (roi7) de apenas um pixel, podendo ainda, apesar de algumas

complicações, gerar grá�cos 3D. Por �m o detector de área é capaz de gerar grá�cos 3D de forma rápida, já

que para isso basta varrer apenas uma direção, para produzir um volume de intensidades, de forma análoga

ao detector linear, pode-se regular a roi de um detector de área a �m de emular um detetor linear, ou mesmo

um pontual.

4.1 Imagens digitais

Uma imagem no �mundo real� pode ser entendida como uma função de duas variáveis, da forma

I(x, y), em que a amplitude I(x, y) representa, por exemplo, o brilho ou intensidade relativa a posição (x, y)

da imagem no mundo real. Em geral, a amplitude de uma imagem será um número real ou um inteiro,

que resulta de um processo de quantização que converte um intervalo continuo em um número discreto de

níveis. Porém, em alguns casos envolvendo a contagem de fótons, como em detectores, a intensidade será

intrinsecamente quantizada (YOUNG et al., 2004).

Podemos descrever uma imagem digital tomando um espaço 2D discreto, no qual, através de um

processo comumente chamado de digitalização, a imagem I(x, y) passa a ser representada por I[mi, ni].

Nesse processo a imagem bidimensional contínua I(x, y) é dividida entre N linhas e M colunas, sendo agora

um arranjo N ×M , em que a intersecção entre uma linha e uma coluna é chamado de pixel (YOUNG et al.,

2004). O valor da intensidade é dado por I[mi, ni], tal que {mi = 0, 1, 2, ...,M − 1} e {ni = 0, 1, 2, ..., N − 1}.
Na realidade, na maior parte dos casos, I(x, y), que pode ser considerado como o sinal que incide em um

detector 2D, é uma função de várias outras variáveis, como a profundidade (z), comprimento de onda (λ), e

do tempo (t).

Na �gura (4.1) pode-se ver uma imagem capturada por um detector de área, que possui 456 × 501

pixels, durante um experimento de difração de raios X. Nessa imagem, que possuía tamanho inicial de

456 × 501, foi selecionada uma roi em que 240 ≤ mi < 272 e 235 ≤ ni < 267 gerando uma imagem com

N = M = 32, em que o valor da amplitude de cada pixel I[mi, ni] foi normalizada. A roi selecionada

compreende um pico originado quando a condição de difração é satisfeita para um cristal de Aluminato do

Lantânio LaAlO3 (LAO) para a re�exão (005).

7Do inglês region of interest, consiste em selecionar uma área especí�ca do detector.
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Figura 4.1: Imagem de uma roi de um detector de área em que o pico de difração da re�exão (005) do LAO
é mostrado.

Fonte: O autor.

Como podemos ver na �gura (4.1), uma �foto� de um detector de área tem a forma de um arranjo

N ×M bidimensional, que quando é importado em uma linguagem de programação como o Python se torna

conveniente usar a abstração de tratá-lo como uma matriz. Durante um experimento usual de difração de

raios X, varias fotos são tiradas pelo detector, uma em cada passo angular, portanto no �nal desse processo

teremos L fotos disponíveis. Para processar e analisar essas L fotos é comum agrupá-las em uma matriz de

matrizes, um objeto tridimensional da forma L×M ×N , que poderia ser entendido em algo como �empilhar�

as L fotos tiradas. O grá�co desse arranjo seria algo como mostrado na �gura (4.2), em que foram empilhadas

95 fotos de 456×501 pixels. A terceira dimensão acrescentada ao arranjo pelo agrupamento das fotos de�ne a

matriz de intensidade tridimensional, dessa forma obtemos informações referentes a um determinado volume

do espaço.

Analogamente ao detector de área, detectores lineares geram imagens da forma 1×M , ou seja, temos

os pixels dispostos em uma linha, portanto um arranjo unidimensional. Seria o equivalente a selecionar uma
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Figura 4.2: Fotos de um detector de área empilhadas usando a biblioteca voltada para a visualização de
dados Mayavi.

Fonte: O autor.

roi que se restringe a apenas uma linha de um detector de área. Logo, quando agruparmos várias imagens

obtidas em um experimento por um detector linear, obteremos um matriz da forma L ×M , o que signi�ca

varrer uma determinada área do espaço tridimensional. Para o detector pontual, que possui apenas um pixel,

e o arranjo obtido é zero-dimensional 1 × 1, o agrupamento de L medidas tem simplesmente a forma de L,

i.e, varremos apenas uma direção do espaço.

4.2 Tipos de Plots

4.2.1 Plots 1D

Os plots de grá�cos 1D são comumente feitos com detector pontual, sendo bastante corriqueiro na

análise de dados de difratômetros de bancada, que, em geral, possuem uma geometria de difratômetro mais

simples com apenas um eixo de amostra e um de detector. Existem também alguns difratômetros de bancada

com 4 eixos (3S+1D) voltados para monocristais e �lmes. Uma medida comum para gerar esse tipo de grá�co

é a θ − 2θ, na qual o o ângulo de detector varia o dobro do ângulo de incidência. Um grá�co obtido a partir

desse tipo de técnica é mostrado na �gura (4.3). Para esse plot é necessário apenas duas matrizes 1D, uma

contendo os ângulos varridos em 2θ e outra com a intensidade associada a cada um dos pontos.

4.2.2 Plots 2D

Como citado anteriormente, grá�cos 2D podem ser gerados com todos os tipos de detectores citados.

O grá�co 2D é capaz de transmitir uma quantidade muito maior de informações, quando comparado a um

grá�co de apenas uma dimensão. Nesse tipo de grá�co, a intensidade é plotada como valores escalares na

forma de um mapa de cores, enquanto os eixos são descritos pelas componentes do vetor Q. O grá�co da
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Figura 4.3: Grá�co 1D da difração de raios X de um monocristal de LAO.

Fonte: O autor.

�gura (4.4), foi obtido a partir de um experimento de XRD, em um cristal bulk8 de LAO, utilizando-se um

detector de área, os dados foram tratados para simular um detector linear. O grá�co foi gerado em Python,

com o auxilio da biblioteca matplotlib, sendo necessário duas matrizes bidimensionais, correspondentes as

componentes do vetor Q, e uma outra matriz 2D contendo os dados das intensidades.

Figura 4.4: Grá�co 2D da difração de raios X de um cristal de LAO.

Fonte: O autor.

8Terminologia para descrever cristais maciços, inteiriços.
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Diferentemente do plot 1D, aqui foram utilizados componentes do vetor Q e não diretamente o ângulo

do difratômetro. Por esse motivo, no processo de tratamento de pixel para ângulo e posterior conversão

de ângulo para espaço Q, perde-se o grid igualmente espaçado do detector. Isso pode acarretar alguns

problemas ao construir o grá�co, dependendo de como o algorítimo utilizado para realizar o plot lida com

esse problema, e qual tipo de interpolação será feita para construir o grá�co. O algorítimo do matplotlib não

apresenta problemas em processar esse tipo de dados, como pode-se ver na �gura (4.4), na qual os dados são

plotados sem nenhum tipo de tratamento prévio para correção do grid. Foi utilizado apenas um tratamento

logarítmico para evidenciar a intensidade.

4.2.3 Plots 3D

De forma análoga à diferença da quantidade de informações do grá�co 1D para o 2D, os grá�cos

3D apresentam maior quantidade de informação em comparação a grá�cos 2D. Eles podem ser gerados por

todos os tipos de detectores citados, porém, como citado anteriormente, é preferível a utilização de detectores

de área na maioria dos casos, já que eles reduzem consideravelmente o tempo do experimento, quando se

está interessado na contribuição da intensidade espalhada de raios X em todas as componentes Qx, Qy, e

Qz. Espera-se que com a mudança para o Sirius, o detector 2D seja o padrão, e que sua utilização não

comprometa o tempo do experimento se comparado à detectores linear e pontual, como acontecia no UVX9.

Em contraste ao processo de empilhamento mostrado na �gura (4.2), em que as imagens do detector

foram empilhadas seguindo apenas a ordem de aquisição, nesse tipo de grá�co é necessário informar também

a matriz de endereços, de�nidas em relação ao vetor de espalhamento Q, para assim obter algo coerente e com

signi�cado físico. Nessa abordagem, as fotos tiradas pelo detector correspondem a intensidade relativa a uma

determinada posição das componentes de Q , e, por exemplo, o elemento (1, 1, 1) de cada uma das matrizes

(Qx, Qy, e Qz) são relacionados com o elemento (1, 1, 1) da matriz de intensidade, e assim sucessivamente,

implicando que, necessariamente, as matrizes possuam o mesmo formato L×M×N . O plot 3D irá gerar uma

imagem como mostrado na �gura (4.5), que foi gerada pela função isosurface do MATLAB. Como se trata

de 4 matrizes 3D, esse tipo de grá�co apresenta uma grande quantidade de pontos, que consomem grande

quantidade de memória, necessitando de um processamento potente para ser gerado com rapidez.

9Fonte de luz síncrotron desativada no CNPEM que será substituída pelo Sirius.
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Figura 4.5: Grá�co 3D de da difração de raios X de um �lme de óxido de cobalto (Co3O4) em um substrato
de sa�ra (Al2O3) gerado em MATLAB. (a) Vista 3D. (b) Vista do plano QxQz. (c) Vista do plano QxQy.

Fonte: Guilherme Calligaris.
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5 Metodologia

Com a mudança do UVX para o Sirius, o Laboratório Nacional de Luz Síncrotron iniciou um movi-

mento visando que o Python se torne a linguagem de programação padrão. Com a padronização linguagem

todo tipo de implementação e integração entre as várias linhas de luz e grupos de computação se torna mais

fácil. Portanto, o desenvolvimento de programas/scripts em Python se tornou bastante recorrente, além

disso, alguns scripts e programas que não possuem mais suporte, ou eram escritos em linguagens obsoletas,

tiveram demanda para que fossem atualizados e transferidos para linguagem Python.

Atualmente o controle do difratômetro da linha é realizado através do software chamado SPEC

(SPEC, 1998). Se trata de um software bastante conhecido e muito bom no que se propõe a fazer, i.e., mover o

difratômetro de forma a sondar o espaço recíproco ao fornecer diretamente posições de hkl. Porém, ele é closed

source10, e por isso atualmente ele é um gargalo em qualquer tipo de integração que o envolva, di�cultando o

desenvolvimento de novas ferramentas e integrações. Usar o SPEC como ferramenta padrão para os próximos

anos pode nos deixar presos a respeito de futuros desenvolvimentos. Logo, trazer o desenvolvimento de uma

ferramenta como essa para o centro abre várias possibilidades, não apenas para novas integrações por parte

dos grupos de computação, como a possibilidade de o usuário realizar o experimento e sair da linha com boa

parte dos dados já tratados. Portanto o desenvolvimento de uma ferramenta similar ao SPEC é extremamente

relevante, e a abordagem utilizada para dar inicio a essa tarefa desa�adora será descrita nessa seção.

A reconstrução tridimensional do espaço recíproco, que anteriormente era realizada em MATLAB,

foi demandada para ser realizada em Python. E assim, trazendo esse desenvolvimento também em Python,

torna qualquer integração necessária muito mais direta. Isso abre a possibilidades de realizar essa análise de

dados, complexa e computacionalmente dispendiosa, a partir da infraestrutura e conhecimento do Sirius. O

benefício para os usuários seria grande, já que a extração desse tipo de resultado da medida crua atualmente

depende totalmente do usuário. Em vista disso também é apresentada a abordagem utilizada para fazer o

processamento desses dados em Python.

5.1 Controle do difratômetro

A premissa principal pela qual se baseou o desenvolvimento do programa para futuramente suprir

o SPEC, foi a de que a ferramenta deveria ser bastante similar a ele, para que a transição e a curva de

aprendizado entre uma ferramenta e outra fosse a mais suave possível. Além disso, como o SPEC é um

programa que roda direto no terminal, seria interessante manter essa abordagem, e claro, a ferramenta deve

fazer os cálculos de forma e�ciente e consistente.

Foi tomado como base para o programa uma biblioteca em Python chamada xrayutilities (KRI-

EGNER; WINTERSBERGER; STANGL, 2013). Nela, além de uma grande quantidade de ferramentas já

desenvolvidas para análise de dados de experimentos de XRD, existe uma rotina voltada para controle de

difratômetros. Essa rotina faz o cálculo dos ângulos necessários para atingir um (hkl) através de um processo

de minimização. Entretanto, ainda não existem muitas possibilidades como a de fazer restrição em pseudo-

ângulos, sendo necessário implementar algo como os modos de operação descritos na seção (3.4). Na função

de minimização é possível passar funções de restrição, assim, as equações para os cálculos de pseudo-ângulos

desenvolvidas na seção (3.2), foram utilizadas. A partir disso foi possível desenvolver uma rotina que usa-se

os modos de operação para fazer as restrições de forma mais conveniente.

10Programa em que o código fonte é suprimido.
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Com auxílio do xrayutilities e outras bibliotecas comuns em Python, como NumPy, SciPy, Argparse,

matplotlib, iniciou-se o desenvolvimento do programa.

A primeira abordagem foi desenvolver uma classe em Python, para que praticamente todas as funções

relevantes fossem integradas, que pode ser entendido como o núcleo do programa. Após o núcleo estar

consistente, buscou-se por maneiras de fazer a integração com o terminal do Linux, e assim foi criada, com

auxílio da biblioteca Argparse, uma camada para fazer a comunicação com o usuário via terminal. Para

o desenvolvimento dessa camada houve a integração do código em Python com a linguagem Bash Shell

Scripting11, para viabilizar o uso do programa no terminal. O programa desenvolvido recebeu o nome de

Di�ractometer Angles Finder (DAF). Por �m, foram realizados testes comparando os resultados do DAF

com o SPEC, para checar a consistência do DAF.

5.2 Reconstrução tridimensional do espaço recíproco em Python

Similarmente ao desenvolvimento do DAF, a biblioteca xrayutilties também foi utilizada para a

reconstrução tridimensional do espaço recíproco. A partir da rotina já implementada para detectores de

área, que converte ângulos reais do difratômetro de 6 círculos para componentes do vetor Q, foi possível

obter as matrizes de endereço necessárias para fazer o plot. A matriz de intensidades foi obtida a partir

das fotos tiradas pelo detector durante o experimento que foram tratadas com o NumPy. Para realizar o

tratamento prévio de dados antes de realizar o plot, utilizou-se as bibliotecas NumPy e xrayutilities, enquanto

para realizar o plot foi usado as bibliotecas Plotly e Mayavi.

11Linguagem de programação base para sistemas Unix/Linux.
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6 Resultados e Discussão

6.1 Di�ractometer Angles Finder (DAF)

DAF é um programa feito majoritariamente em Python que basicamente tem a função de controlar

o difratômetro de 6 círculos (4S+2D) presente na linha EMA. Ele é feito a parir bibliotecas em Python, a

principal sendo a xrayutilities, e que roda diretamente no terminal de sistemas Linux/Unix. Nele, além de

informações cristalográ�cas e informações referentes ao experimento, pode ser passado determinada coorde-

nada no espaço recíproco em função de (hkl) que se queira sondar, e o cálculo dos ângulos do difratômetro

necessários para atingir essa re�exão serão feitos. Além de possuir várias outras funções, o DAF também é

compatível com scripts de usuários �macros� que podem automatizar processos e otimizar o tempo de uso da

linha.

Apesar do cerne do DAF ser desenvolvido em Python, parte considerável do código é feito em Bash

Shell Scripting. Isso foi feito visando que o terminal do Linux fosse a interface de comunicação entre o DAF e

o usuário. Dessa forma qualquer integração com os sistemas do grupo SOL12 do Sirius, que em geral podem

ser chamadas via terminal, se torna trivial. A decisão por uma interface de linha de comandos foi priorizada

em detrimento do grande volume e frequência de inputs que devem ser passados, o que poderia ser bastante

dispendioso em uma interface grá�ca, embora exista a possibilidade do controle por uma ferramenta via

GUI13, que será discutida mais adiante.

Nele é utilizado a abordagem de modos de operação para controlar as restrições feitas aos graus de

liberdade do difratômetro, descrito na seção (3.4). No momento, todos os cálculos referentes ao espaço Q

são feitas através de uma função de minimização do SciPy, chamada através do xrayutilities. Para realizar a

minimização calcula-se o vetor Q de referência para um (hkl) solicitado, e através de uma função que leva

em consideração todos os ângulos reais do difratômetro, calcula-se o vetor Q, que deve ser minimizado em

relação ao vetor de referência previamente calculado.

Atualmente o DAF possui um total de 15 funções que podem ser chamadas pelo terminal, e funcionam

através de uma rotina interativa. Antes de realizar os cálculos deve-se fornecer informações sobre a amostra e

o experimento, bem como con�gurar o modo de operação, os limites de rotação de motores disponíveis, setar

o valor em que os ângulos restringidos devem �car, calcular a matriz U, etc.. Após todas as con�gurações

iniciais serem feitas, é possível se mover pelo espaço recíproco. Já existem algumas inovações, como é o caso

da função daf.rmap, que permite o usuário, auxiliado por uma interface grá�ca do espaço recíproco, clicar

em um (hkl) e calcular os ângulos necessários para alcançá-lo. As funções do DAF que serão discutidas em

maior detalhe, podem ser vistas a seguir

É importante ressaltar que no momento o DAF está rodando de maneira totalmente simulada, e

testes estão sendo feitos para entender o quão consistente são seus resultados e operação. Toda sua utilização

está documentado para usuários através da opção -h ou - -help que pode ser passada a todas as funções,

auxiliando os usuários a utilizá-las. A ajuda dispostas no terminal foi feita com a intenção de ser bastante

semelhante com as apresentadas pelos comandos nativos do shell14, todas possuem uma estrutura bastante
12Software de Operação das Linhas de Luz.
13Do inglês Graphical User Interface.
14Programa que expõe os serviços de um sistema operacional para um usuário ou outros programas. O nome shell é devido

ao fato de ele ser a camada mais externa em volta do sistema operacional.
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similar, da forma:

6.1.1 De�nição dos parâmetros básicos

Para iniciar o DAF deve-se ir em um diretório em que se queira que os dados gerados �quem,

e utilizar a função daf.init, que tem simplesmente a função de gerar os arquivos necessários para usar o

DAF no diretório atual do usuário, no momento a única opção disponível é a -6c que faz referência a um

difratômetro de 6-círculos.

Para de�nir a energia, amostra, sistemas de referência da amostra, utiliza-se a função daf.expt. Nela

podemos usar uma amostra prede�nida no sistema, ou ainda de�nir uma nova amostra a partir dos parâmetros

de rede. Os comandos necessários são da forma:

em que no primeiro caso a energia foi de�nida através do comprimento de onda de 1Å, foi escolhido o

material prede�nido silício, sendo informado que a direção [100] está ao longo do feixe e a direção [001] está

perpendicular ao feixe. Já no segundo caso, de�niu-se um novo material �meu_Si� a partir do parâmetros

de rede, e a energia foi de�nida em 8000 eV.
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O modo de operação, isto é, as restrições nos graus extras de liberdade, são feitos com base na tabela

(1), na qual deve ser seguido as recomendações descritas na seção (3.4) para passar ao programa. O modo é

passado através do comando daf.mode, como segue:

assim foi selecionado o modo 215, que signi�ca nu �xo, alfa = beta, e eta = delta

2 .

A seguir é interessante de�nir os limites angulares pelos quais os motores podem se mover, já que

cada experimento pode ter limites diferentes, devido, por exemplo, a ambientes de amostra que podem

limitar bastante o range dos motores. Existe um limite padrão pré-de�nido baseado nos limites básicos do

difratômetro, mostrados a seguir pela função daf.bounds com a opção -l.

Que podem ser manipulados através da mesma função daf.bounds, da forma:

em que o eixo do delta foi restringido de 45 a 135 graus e o círculo do chi de −50 a 50 graus.

Para �xar os ângulos ou pseudo-ângulos restringidos através do modo de operação em algum ângulo

especí�co, utiliza-se a função daf.cons. Por padrão o DAF �xa o ângulo ou pseudo-ângulo restringido pelo

modo de operação em 0 graus, porém, muitas vezes é de interesse �xar esses ângulos em valores diferente de

0, que pode ser feito da seguinte maneira:
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no qual alfa foi �xado em 3◦, nu em 30◦, e qaz em 90◦, enquanto os demais permaneceram no padrão, i.e, 0◦.

É importante ressaltar que as restrições impostas por essa função só serão aplicadas se o modo de operação

atual, de fato, restringir o ângulo/pseudo-ângulo em questão.

Por �m pode ser útil calcular a matriz de orientação U, visto que é inviável orientar os vetores

da rede do cristal com o sistema de coordenadas do laboratório no momento da montagem da amostra no

difratômetro. Lembrando que as larguras de picos de difração de monocristais podem chegar a milésimos de

grau. É esse o nível de alinhamento/precisão necessária na movimentação. Portanto, calcular a matriz U

antes de começar a movimentação do difratômetro é indispensável, caso contrário os erros de desalinhamento

podem ser muito grandes. A matriz de orientação é calculado pelo DAF através da implementação dos

cálculos mostrados na seção (3.3), podendo ser calculada através de duas ou três re�exões pela função daf.ub,

como mostrado na sequência:

Nesse caso utilizou-se a abordagem de calcular para duas re�exões. O resultado foi obtido, para o

silício, a partir das re�exões (100) e (010) e seus respectivos ângulos. Vemos que a matriz U está informando

que o cristal está levemente desalinhado, pois existem componentes fora da diagonal principal, e caso não

houvesse desalinhamento, resultaria na matriz identidade. Calculando agora para 3 re�exões temos:
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Para esse caso as re�exões (100), (010), (001) e e seus respectivos ângulos foram utilizadas. Ve-se

que os resultados são idênticos aos obtidos a partir de duas re�exões, com o diferencial de que foi possível

calcular também os parâmetros de rede do silício, que se assemelham bastante comparado com a literatura.

Caso se tenha a intenção de de�nir um novo material a partir do modo daf.expt, pode-se usar esse cálculo

para obter os parâmetros de rede, que já está integrado a de�nição do material pela função daf.expt, sendo

necessário apenas a de�nição de um nome para o material.

Após todas essas con�gurações pode ser de interesse do usuário ter uma visão geral de como o

experimento está de�nido no DAF, e com isso veri�car se algum erro de de�nição ou mesmo de digitação

ocorreu. Para isso basta usar a função daf.status com o parâmetro -a, para que todas as informações de�nidas

até aqui possam ser vistas. A saída desse comando resulta em:

6.1.2 Movimentação

Com todas as con�gurações iniciais do experimento de�nidas, pode-se começar a movimentação do

difratômetro a �m de sondar regiões de interesse do espaço recíproco. Sempre que um novo experimento é

iniciado no DAF ele parte com todos os motores em 0 graus. O programa possui basicamente três formas para

movimentar os círculos do difratômetro, sendo elas performadas pelas funções daf.amv, daf.mv, daf.rmap.

O jeito mais simples pelo qual se pode mover o difratômetro é mover diretamente os ângulos, sem

estabelecer ou satisfazer qualquer tipo de relação, ou seja, simplesmente solicitar que determinado ângulo

real do difratômetro gire um número de graus. Isso é feito através da função daf.amv que permite navegar

no espaço recíproco de uma maneira mais livre. É comum utilizar nesse caso o comando daf.wh, que tem a

função de dizer como está a orientação atual do experimento no espaço recíproco, informando também como

os ângulos e pseudo-ângulos se encontram no momento. Um exemplo desses comandos é mostrado a seguir:
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Nesse caso foi solicitado que o eixo do delta fosse para a posição 30◦ e o eixo do eta fosse para a

posição 15◦, atingindo a posição em termos de (hkl) para o silício da forma h = 1.81398, k = 0, e l = 0, como

visto na saída do comando. Essa forma de movimentação é mais rudimentar comparada com as demais, mas

possui sua utilidade dependendo do que se queira fazer.

A outra maneira de mover o difratômetro é a mais conhecida. A abordagem consiste em mover o

difratômetro fornecendo como input diretamente a posição do espaço recíproco que se queira sondar, assim

podemos ir diretamente para uma posição em (hkl), levando em consideração, é claro, o modo de operação

selecionado. A função responsável por performar essa movimentação é a daf.mv, que pode ser vista a seguir:

Na primeira linha vemos o modo de operação em que o cálculo foi feito, nesse caso, 21500 além do

valor do erro associado a minimização de 1.85·10−7. Na segunda e terceira linha, além de algumas informações

do experimento, vemos o (hkl) calculado. Por �m, nas últimas 2 linhas estão os ângulo e pseudo-ângulos

calculados pela minimização, e �ca claro que o modo foi satisfeito adequadamente, já que alfa = beta, nu =

0, e eta = delta

2 , e basicamente para atingirmos o (hkl) = (111), satisfazendo as condições impostas, basta

mover o ângulos reais do difratômetros para as posições calculadas.

A última maneira pela qual se pode mover o difratômetro é uma inovação do DAF. Com o auxílio de

uma interface grá�ca de um plano do espaço recíproco, pode-se clicar em um (hkl) que se queira investigar, e
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o DAF calculará os ângulos necessários para atingir o (hkl) solicitado. Porém, o diferencial dessa ferramenta

reside na possibilidade de visualizar como o espaço recíproco esta disposto, além da informação de quais

re�exões podem ser atingidas com as con�gurações atuais, já que dependendo da energia em que se realiza

o experimento, as re�exões acessíveis podem variar, já que o vetor Q depende da energia. Não somente

a energia pode limitar o experimento, dependendo da maneira como nu e delta estão restringidos, o valor

mínimo e máximo do 2θ alcançado, que é de�nido por esses dois ângulos, pode variar, culminando novamente

na restrição das regiões acessíveis. A função responsável por isso é daf.rmap, e a interface grá�ca gerado é

mostrada na �gura (6.1).

Figura 6.1: Interface grá�ca gerado pelo comando daf.rmap. Nela, pode-se clicar em qualquer um dos hkl
disponíveis para realizar o cálculo dos ângulos necessários para atingir aquela re�exão.

Fonte: O autor.

Nessa imagem que representa um plano no espaço recíproco, delimitado pelos vetores (0, 1, 0) no

eixo das abscissas e (0, 0, 1) no eixo das ordenadas, podemos ver a disposição das re�exões do silício que

estão disponíveis nessa fatia do espaço, são poucas devido a grande simetria da amostra, levando a diversas

extinções15. Ao se clicar em uma das re�exões como a re�exão mostrada (004), será calculado os ângulos

necessários para alcançá-la, e a função daf.wh será chamada para mostrar no terminal o resultado do cálculo

como visto na �gura (6.2). O cálculo realizado pelo daf.rmap, também segue o modo de operação de�nido,

nesse caso alfa = beta, nu = 0, e eta = delta

2 .

As re�exões que estão na região sombreada são inacessíveis, pois para esse caso, delta é o único

ângulo de detector livre, já que nu está restringido em 0◦, e delta teve seus limites restringidos a [−20◦, 120◦].

Dessa forma o alcance máximo de 2θ também �ca restringido até 120◦, isso pode ocorrer na prática pela

restrição imposta ao difratômetro devido ao ambiente de amostra. A saída para acessar as re�exões na

zona vermelha seria aumentar a energia do feixe incidente de raios X, resultando na compressão do espaço

recíproco. O exemplo da �gura (6.1) foi feito na energia de 8keV, em comparação, a �gura (6.3) foi gerada

15O fator de estrutura se anula devido a simetria, de forma que a intensidade referente aquela re�exão também se anula.
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mantendo-se todos os parâmetros constantes, exceto a energia que foi aumentada para 12keV. Outras opções

do daf.rmap é a capacidade de de�nir planos do espaço em qualquer direção, passando como parâmetro dois

vetores linearmente independentes.

Figura 6.2: Cálculo gerado ao clicar em um hkl na interface grá�ca da função daf.rmap.

Fonte: O autor.

Figura 6.3: Interface grá�ca da função daf.rmap gerada para energia em 12 keV.

Fonte: O autor.

Além dessas opções de movimentação, existe uma outra voltada para de fato realizar um experimento,

na qual se varre determinada região do espaço recíproco. Nela podemos fornecer um valor inicial e �nal de

hkl pelo qual se quer mover, selecionando também o número de pontos que se quer nesse procedimento. A

função para realizar essa tarefa se chama daf.scan, e possui como saída um arquivo csv16 com os dados de
16Do inglês comma separated values, refere-se a um arquivo em que as colunas de uma tabela são separadas por virgula.
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ângulos e pseudo-ângulos calculados para cada uma das re�exões contidas entre esses pontos.

Como se poder ver, o scan foi feito partindo do hkl (0.9, 0.9, 0.9) indo até o hkl (1.1, 1.1, 1.1) com

10 passos. Foi escolhido um número muito pequeno de passos já que o intuito é apenas ilustrar a saída da

função, em um experimento real, em geral, são feitos alguns scans menores com em torno de 100 passos, para

�ns de alinhamento, e um scan principal que possui por volta de 1000 pontos. A função gerou um arquivo

csv chamado de �meu_scan�, e também foi usado a opção -v para que a saída fosse mostrada no terminal.

Na saída do comando, vemos que se trata de várias linhas com a informação dos ângulos e pseudo-ângulos

referentes a cada uma das re�exões calculadas, além do erro associado a cada processo de minimização. Existe

uma veri�cação para que, caso alguma minimização falhe em qualquer ponto do scan, seja levantado um erro,

e o scan é encerrado abruptamente, dessa forma evitando problemas quando o difratômetro for fazer de fato

essa varredura.

6.1.3 Utilitários

O DAF apresenta alguns comandos mais voltados para o gerenciamento geral das rotinas, que podem

facilitar bastante a vida dos usuários. Seja a possibilidade de restaurar todos as de�nições para o padrão, ou

a capacidade salvar con�gurações que o usuário possa ter achado interessante em ambientes, ou ainda auto-

matizar processos com macros, que permitem que uma rotina corriqueira seja automatizada e posteriormente

reproduzida quantas vezes se queira, facilitando e otimizando o uso da linha.

Para rede�nir todas as de�nições para o padrão basta usar o seguinte comando:

Caso o usuário tenha encontrado alguma con�guração de seu interesse, de modo, energia, motores etc.

ele poderá salva-la como um ambiente. Possuindo a opção de criar, excluir e mudar de ambiente, facilitando

bastante o processo. O comando para isso se chama daf.setup, e pode ser usado das seguintes formas:

Passando o parâmetro -s e o nome do ambiente, nesse caso �env_2.0�, um novo ambiente com esse

nome será criado, caso não seja fornecido um nome, passando somente o parâmetro, a informação será salva

no ambiente atual. Pode-se também mover-se livremente entre os ambientes prede�nidos ou excluí-los caso

se queira. O comando para listar os ambientes disponíveis também irá informar em qual ambiente o usuário

está atualmente, da seguinte maneira:
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O último utilitário disponível é voltado para a criação de macros. A partir de seu uso é criado um

arquivo executável que irá repetir todos os comandos que o usuário utilizou em quanto o comando estava ativo.

Basicamente o usuário tem que utilizar o comando informando o DAF para iniciar a gravar os comandos, e

continuar usando o DAF normalmente, visando criar um script, ao �nal basta informar o DAF para parar

de gravar. Com isso é gerado um arquivo executável que pode ser chamado através do DAF, ou mesmo

executado diretamente no terminal, um exemplo é mostrado a seguir:

A função de executar macros é uma característica bastante relevante, que facilita muito processos

repetitivos, e assim a função daf.macro foi criada para tentar suprir essa demanda. Porém, apesar da facilidade

de uso proporcionada por essa ferramenta, em geral, é de grande interesse o uso de lógicas de programação

dentro de uma macro, como iteradores e condicionais. A função daf.macro não disponibiliza essa opção e só

repetirá o que o usuário fez. Entretanto, como o DAF é um programa que roda em terminal, pode-se usar a

programação em shell, que é bastante robusta, para fazer lógicas e interagir com as funções do DAF.

6.1.4 Validação dos cálculos do DAF

Para se ter ideia da consistência dos cálculos feitos pelo DAF, foi utilizado o software SPEC como

base para comparações. Para isso, foram feitas macros tanto para o SPEC como para o DAF. Nelas, foram

calculados os hkls variando de (−1 − 1 − 1) até (1 1 1), excluindo apenas o (000), para três vetores de

referência, sendo eles (100), (010), (001). Isso foi feito para 3 modos de operação, 21500 (nu = 0◦, alfa=beta,

eta= delta

2 ), 20230 (nu = 0◦, mu= 0◦, chi = 90◦), e 31500 (qaz = 0◦, alfa=beta, eta= delta

2 ) gerando um total

de 78 casos por modo, e ao todo 234 casos. Esse método foi aplicado para célula unitária cúbica, hexagonal,

trigonal, tetragonal, ortorrômbica, monoclínica e triclínica.

Os resultados do primeiro teste foram dispostos no grá�co da �gura (6.4). Podemos ver que o DAF

conseguiu atingir muito menos re�exões do que o SPEC, porém, foram impostos a ambos os programas as se-

guintes restrições nos círculos do difratômetro: delta = [−10◦, 160◦], eta = [−10◦, 160◦], chi = [−10◦, 100◦],

phi = [−400◦, 400◦], nu = [−10◦, 160◦], mu = [−10◦, 160◦] . O DAF faz suas contas sempre levando em con-

sideração esses limites, o SPEC não. A maneira que o SPEC opera consiste em primeiro fazer as contas sem

restrições de ângulos, e quando de fato for solicitado que o difratômetro mova para aquele hkl, ele veri�cará

se os limites permitem essa movimentação. Para que a comparação seja justa, deve-se considerar apenas os

casos em que o SPEC calculou dentro dos limites impostos, essa discussão será feita para um caso especí�co

nessa seção.

Após os obtenção dos primeiros resultados, a quantidade baixa de acertos do DAF chamou a atenção,

mesmo levando em conta o fato de o SPEC fazer o cálculo sem levar os limites em consideração. Investigando-

se as re�exões que não foram bem sucedidas, percebeu-se que propondo uma coleção de pontos de partida

para auxiliar no processo de minimização fazia com que o DAF encontrasse o hkl solicitado com sucesso.

Isso possivelmente ocorre devido a minimização �car �presa� em um mínimo local, e quando parte de um
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ponto diferente, ela consegue encontrar a verdadeira solução. Após algumas alterações na lógica utilizada

nos valores iniciais da minimização, ao rodar a macro novamente obteve-se os resultados mostrados na �gura

(6.5).

Figura 6.4: Grá�co do primeiro resultado das macros comparando para todos os tipos de células unitárias os
acertos entre DAF e SPEC.

Fonte: O autor.

Figura 6.5: Grá�co feito após a alteração na lógica de chutes iniciais do DAF, comparando os resultados com
o SPEC para todas os tipos de células unitárias, nele é possível ver que um número muito maior de re�exões
foi encontrado pelo DAF.

Fonte: O autor.

Vemos que essa abordagem foi bastante efetiva, e em alguns casos o número de hkls encontrados

mais do que dobrou. Além de melhorar consideravelmente a consistência do DAF, essa abordagem foi capaz

de aumentar também a performance, já que ao encontrar mais re�exões, menos minimizações eram feitas até

esgotar o limite de iterações, o que deixava o tempo para rodar a macro extremamente grande. Não somente

isso, mas a lógica anterior para os valores iniciais era bastante ine�ciente, e gerava um gigantesco número de
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iterações. Com essa nova implementação o tempo gasto em cada minimização reduziu-se consideravelmente,

enquanto a consistência foi signi�cativamente melhorada, como mostra o grá�co (6.5).

Com relação as contas do SPEC não levarem em consideração os limites impostos, um caso em

particular será estudado mais a fundo. Para isso, foi selecionado uma amostra de célula cúbica e o modo 21500

(nu = 0◦, alfa=beta, eta = delta

2 ) foi levado em consideração. Dessa forma, esses dados são um subconjunto

dos dados da primeira coluna da �gura (6.5). Sob essas condições o SPEC conseguiu encontrar 92, 308% das

re�exões, das quais apenas 38, 462% estavam dentro dos limites previamente impostos. Enquanto isso o DAF,

sem as correções de valores iniciais, foi capaz de encontrar apenas 33, 333%, porém todas estavam dentro dos

limites. Contudo, após a alteração na lógica de chutes iniciais, o DAF foi capaz de encontrar 65, 385% das

re�exões, e todas estavam dentro do limite. Esses dados estão sumarizados no grá�co da �gura (6.6).

Figura 6.6: Comparação entre os acertos para o modo 215 de uma célula unitária cúbica entre DAF e SPEC,
evidenciando a proporção de re�exões encontradas que estavam dentro das restrições impostas.

Fonte: O autor.

Portanto, avaliando os dados dispostos na �gura (6.6), o DAF se sai melhor do que o SPEC sob

esse viés. Indo além, pode-se concluir que existem re�exões que poderiam ser alcançadas dentro dos limites

impostos, porém, como o SPEC faz o cálculo sem levar em considerações as restrições, isso não acontece. No

contexto da linha EMA, é esperado que ambientes de amostra limitem a movimentação dos eixos de amostra

do difratômetro. Nesses casos, o DAF já está pronto para isso.

6.2 Reconstrução tridimensional do espaço recíproco

Um dos grandes desa�os ao se lidar com esse tipo de plot reside no fato de que os dados estão no

formato de matrizes 3D, sendo 3 matrizes de endereço em função das componentes do vetor Q, e uma de

intensidade obtida a partir das fotos tiradas pelo detector. Para plotar o grá�co mostrado anteriormente na

�gura (4.5), foi utilizado a função isosurface do MATLAB, que consegue lidar bem com esse tipo de dados,

gerando grá�cos coerentes. Porém, em Python, as bibliotecas mais corriqueiras para visualização de dados,

como o matplotlib, não conseguem lidar com esse tipo de dados. As poucas bibliotecas encontradas capazes

de manejar dados de matrizes 3D, como Plotly e Mayavi, possuem di�culdades para lidar com dados não

igualmente espaçados, que é o caso em questão, já que o grid igualmente espaçado é perdido pela conversão

de ângulos para componentes de Q.

67



A primeira abordagem para plotar um grá�co similar ao obtido em MATLAB se resumiu em simples-

mente utilizar as 4 matrizes 3D sem nenhuma alteração, de forma idêntica ao utilizado na função isosurface

do MATLAB. Entretanto as bibliotecas Plotly e Mayavi tiveram di�culdades em processar os dados não

igualmente espaçados, gerando resultados sem coerência no caso da Mayavi como visto na �gura (6.7), em

que o resultado é praticamente um plano no espaço, com a intensidade comprimida nele. No caso do Plotly,

não foi possível nem mesmo gerar um grá�co com dados, sendo gerado apenas uma imagem com os eixos.

Figura 6.7: Grá�co gerado pelo Mayavi utilizando as matrizes de endereço Qx, Qy, Qz, e a matriz de
intensidade, sem nenhum tipo de tratamento.

Fonte: O autor.

Em seguida, utilizou-se a abordagem de interpolar as matrizes de endereço Qx, Qy, Qz em um grid

igualmente espaçado. Para isso foi utilizada a função mgrid da biblioteca NumPy. É uma interpolação

bastante simples, feita basicamente por utilizar os valores mínimos e máximos de cada uma das matrizes de

endereço, fazendo uma interpolação linear entre esses limites. A partir desse processo foram obtidas matrizes

3D de mesmo tamanho, porém agora com dados igualmente espaçados. O resultado do plot realizado com

as matrizes igualmente espaçadas e a intensidade é mostrado na �gura (6.8) e (6.9), realizadas pelo Mayavi
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e Plotly, respectivamente.

Figura 6.8: Grá�co 3D gerado pelo Mayavi com grid igualmente espaçado nas matrizes de endereço.

Fonte: O autor.

Apesar de agora haver um volume visível sendo delimitado, a intensidade parece estar comprimida,

e como apenas uma porção desse espaço foi de fato sondada, a intensidade não deveria estar distribuída por

todo ele, e sim em apenas uma porção. Com auxílio da biblioteca xrayutilities, usando a função Gridder3D,

outro tratamento foi feito. Os inputs da função são as matrizes de intensidade Qx, Qy, Qz, e a matriz de

intensidade, assim essa função coloca todos os dados em um grid igualmente espaçado, além de interpolar

a intensidade levando em conta as matrizes de endereço. Entretanto, como output obtemos matrizes 1D

para Qx, Qy, e Qz e uma matriz 3D para a intensidade, isso é um problema, já que para plotar o grá�co é

necessário que as 4 matrizes possuam 3 dimensões. Esse problema foi resolvido aplicando a função mgrid do

NumPy nos valores de Qx, Qy, e Qz obtidos a partir do Gridder3D, de forma análoga a feita anteriormente.

Portanto, agora haviam novamente 4 matrizes 3D, sendo Qx, Qy, e Qz obtidas a partir da função mgrid do

NumPy, e a intensidade obtida a partir do Gridder3D, o grá�co gerado após esse tratamento é mostrado na

�gura (6.10).
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Figura 6.9: Grá�co 3D gerado pelo Plotly com grid igualmente espaçado nas matrizes de endereço

Fonte: O autor.

Agora o volume varrido está de acordo com o esperado pelo experimento, e os picos de intensidades

estão bem visíveis ao longo desse espaço. Para obter um grá�co mais fácil de interpretar parecido com o

mostrado na �gura (4.5), utiliza-se a abordagem de suprimir valores de menor intensidade, possibilitando

uma visão menos poluída, para o que realmente importa, isto é, os picos de intensidade. As �guras (6.11),

(6.12) mostram as imagens obtidas a partir dessa abordagem, nelas é possível ver que, os grá�cos obtidos com

o Plotly consegue gerar grá�cos com a estrutura interna com maior contraste, em comparação ao Mayavi. Já

em comparação ao grá�co gerado pelo MATLAB da �gura (6.13), é evidente que a qualidade das imagens

geradas pelas bibliotecas em Python é menor, gerando imagens menos nítidas. Mesmo com tentativas de

ajustar parâmetros para melhorar a visualização, não foi encontrado uma maneira que impactasse de forma

relevante a qualidade da imagem.

Um dos motivos pelo qual se deve a diferença de qualidade entre o grá�co gerado em Python pelo

Plotly e o grá�co gerado em MATLAB, certamente é devido ao fato de ter sido necessário reduzir os dados

antes de serem plotados pelo Plotly. Os dados possuíam a forma original de 95×456×501 sendo reduzidos para

32 × 160 × 160, signi�cando uma redução de aproximadamente 26, 5 vezes do número de dados comparado

ao tamanho original. Isso foi necessário devido ao grande consumo de memória RAM ao realizar o plot,

possivelmente por não estar otimizado, entretanto a razão para esse consumo exacerbado não está clara.

O computador utilizado para realizar o plot possui 8Gb de RAM, e um número maior de dados do que
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Figura 6.10: Vista em perspectiva do grá�co da 3D-RSM gerado pelo Plotly, com grid igualmente espaçado
nas matrizes de endereço, e com a matriz de intensidade obtida a partir do Gridder3D.

Fonte: O autor.

32 × 160 × 160 culminava em seu travamento. Outro problema observado é que todo processamento tanto

para o Mayavi quanto para o Plotly era feito pela CPU17, ignorando totalmente a GPU18 que não era

utilizada. Logo, para grande conjuntos dados, que podem chegar facilmente em 1000×456×501, isto é, 1000

fotos de um detector de 456× 501 pixels, pode ser bastante laborioso.

Com o intuito de discutir sobre o 3D-RSM, houve uma interação entre o nosso grupo e o grupo

de computação cientí�ca (GCC), que por sua vez sugeriu usar o NVIDIA Index. O GCC está trabalhando

no momento com essa ferramenta bastante promissora para lidar com o problema de processamento. A

ferramenta utiliza a abordagem de realizar o processamento utilizando várias GPUs em paralelo. Isso em

conjunto ao grande poder computacional dos servidores do CNPEM, pode oferecer uma grande performance,

possibilitando até mesmo o plot em tempo real durante o experimento. Segundo o GCC, a ferramenta seria

disponibilizada em Python, podendo ser importada como qualquer outra biblioteca convencional, evitando

qualquer problema de integração. Um grá�co gerado através no NVIDIA IndeX, ainda em fase de desenvol-

vimento/integração, para o mesmo cristal de LAO pode ser visto na �gura (6.14).

17Do inglês Central Processing Unit, faz referência ao processador do computador.
18Do inglês Graphics Processing Unit, faz referência a placa de vídeo do computador.
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Figura 6.11: Grá�co da 3D-RSM gerado peloMayavi com grid igualmente espaçado nas matrizes de endereço,
e com a matriz de intensidade obtida a partir do Gridder3D, usando �ltro para suprimir intensidades baixas.

Fonte: O autor.

Figura 6.12: Grá�co da 3D-RSM gerado pelo Plotly com grid igualmente espaçado nas matrizes de endereço,
e com a matriz de intensidade obtida a partir do Gridder3D, usando �ltro para suprimir intensidades baixas.

Fonte: O autor.
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Figura 6.13: Grá�co da 3D-RSM gerado em MATLAB com �ltro para suprimir intensidades baixas.

Fonte: O autor.

Figura 6.14: Grá�co da 3D-RSM gerado pelo NVIDIA IndeX.

Fonte: GCC.

73



7 Conclusão

Sobre a parte de controle, a comparação natural com a solução que vinha sendo utilizada no LNLS

para esse �m (SPEC (SPEC, 1998)) mostrou resultados promissores. Com a abordagem de realizar os

cálculos via minimização, a implementação dos modos se torna bastante trivial. Basicamente, ela necessita

que funções de restrição sejam passadas para rotina de minimização do xrayutilities. Portanto, basta que se

tenha uma expressão calculada a partir dos ângulos do difratômetro para que se de�na uma restrição a um

grau de liberdade. Em comparação, a tradicional solução analítica usada anteriormente deve ser pensada

para cada possível modo de operação, resolvendo um sistema de equações nada trivial. Aqui foi possível,

por exemplo, viabilizar o modo 20520 via DAF que não está implementado no SPEC. Assim, tal abordagem

permitiu que os cálculos de hkl levassem em consideração a limitação nos alcances angulares do difratômetro.

Isso é interessante no contexto de uma linha de luz, já que os ajustes desses limites são frequentes entre

experimentos distintos. Além disso, o desenvolvimento interno desse código trouxe independência de soluções

comerciais usadas atualmente. Um exemplo foi aliar o input de comandos via terminal com uma interface

grá�ca (�rmap�). O input de comandos pelo terminal facilita scans angulares repetitivos e permite rodar

�macros�, i.e., arquivos com esses comandos já escritos. Por outro lado, a interface grá�ca da suporte ao

usuário (experiente ou não) durante a sondagem do espaço recíproco.

Sobre o tratamento de dados, o uso de medidas tridimensionais do espaço recíproco como prova de

conceito revelou pontos interessantes. A reconstrução do 3D-RSM em Python sofre pela falta de ferramentas

especializadas para a visualização de dados 3D desse tipo. Isso resulta em uma imagem que consome muito

processamento para ser gerada, e não possui boa qualidade quando comparada a do MATLAB. A ferramenta

NVIDIA IndeX é bastante promissora, realizando o plot tanto com maior performance quando com melhor

qualidade. Essa ferramenta poderia ser implementada em paralelo com o DAF, de forma que o tratamento

de dados poderia ser realizado durante o tempo de linha. Essa implementação iria não somente aumentar

o potencial de tomada de decisão, otimizando o tempo da linha, mas também permitiria que a parte mais

onerosa do processamento de dados fosse realizada pela infraestrutura do Sirius, facilitando a obtenção de

resultados por parte dos usuários.

Por �m, com base nesses exemplos, vimos que desenvolvimento interno de ferramentas como o DAF

pode viabilizar soluções especí�cas para movimentação de amostras que levem em consideração características

de cada linha de luz do Sirius, além de proporcionar um melhor suporte para obtenção rápida de resultados

aos usuários, o que é ideal para um laboratório nacional multiusuário como o LNLS.
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8 Perspectivas

Melhora da performance e consistência do DAF

Como os cálculos do DAF são baseados em minimização, podem ocorrer casos em que o processo caia

em um mínimo local e não consiga encontrar uma solução mesmo que ela exista. Por padrão (que não pode ser

mudado em alto nível)19 são realizadas 1000 iterações. Dessa forma, um tempo gigantesco pode ser perdido

nesses casos. Com o intuito de avançar na consistência e performance, uma abordagem possível poderia

ser melhorar a posição inicial do processo de minimização. Com valores iniciais otimizados, os processos de

minimização seriam mais certeiros e rápidos, melhorando não só a consistência como também a performance

do DAF.

Implementação de modo de varredura em energia

Existem outros modos de operação que podem ser implementados ao DAF. Por exemplo, o modo

que envolve 2 ângulos de detectores e a energia (2D+λ) é chamado �energy� na tabela (1) e mencionado por

(YOU, 2018). Como é possível a variar energia de forma controlada em síncrotrons, pode-se utilizá-la como

grau de liberdade para varrer o espaço recíproco enquanto a amostra �ca parada.

Integração do tratamento de dados e ferramentas de ajuste

Como mencionado, a integração de tratamento de dados e ferramentas de ajuste para experimentos

de XRD se torna muito mais direta com o desenvolvimento de uma ferramenta como o DAF. Essa integração

seria ainda mais trivial para algumas ferramentas que o xrayutilities já disponibiliza, podendo agregar diversas

vantagens para a tomada de decisão do usuário durante o experimento. Além do mais, como grande parte

do tratamento dos dados obtidos durante o experimento poderiam ser processados através do xrayutilities,

que é o cerne do DAF, essa tarefa seria bastante simpli�cada. Com isso mapeamentos do espaço recíproco

poderiam ser diretamente integrados com o DAF, e com o auxílio da ferramenta desenvolvida pelo GCC

a reconstrução tridimensional do espaço recíproco poderia ser até mesmo realizada simultaneamente com o

experimento, trazendo informações de extrema relevância em tempo real.

Uso da interface grá�ca para de�nir uma roi

Várias ferramentas estão sendo planejadas para serem desenvolvidas a partir da interface grá�ca

gerada pelo comando daf.rmap do DAF. Uma delas seria a possibilidade de de�nir um intervalo de varre-

dura auxiliado por essa ferramenta. Essa capacidade seria especialmente interessante para analisar tensão e

relaxamento entre �lmes �nos e substratos, de forma ilustrada na �gura (8.1). Nela, poderia ser selecionada

uma área como a mostrada em verde através do mouse e uma seria feita sobre aquela região do espaço recí-

proco. Nesse caso, o processo também levaria em conta automaticamente parâmetros importantes para esses

cálculos, como por exemplo a distância amostra-detector.

Predição das re�exões disponíveis sob restrições de ambientes de amostra

19Só pode ser alterado diretamente no código fonte do xrayutilities.
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Na linha EMA, em que o intuito é estudar materiais sobre condições extremas de pressão, tempe-

ratura, ou campo magnético, os ambientes de amostra podem limitar bastante a movimentação da amostra.

Dessa forma, as regiões no espaço recíproco podem �car bastante restringidas. Como já discutida anteri-

ormente, uma maneira para acessar mais re�exões é comprimir o espaço recíproco ao aumentar a energia.

Porém alguns experimentos restringem tanto o movimento angular do difratômetro, que isso não é o su�ciente.

Esse é o caso para os experimentos em altas pressões utilizando célula de bigorna de diamante (DAC)20 na

qual o desenho esquemático é mostrado na �gura (8.2). Logo ao lado podemos ver as re�exões acessíveis sob

restrições de um 2θ máximo de 60, 3◦. A partir disso, poderia ser desenvolvida conjuntamente ao laboratório

de preparação de amostra uma abordagem para sondar as re�exões de interesse.

Figura 8.1: A interface do daf.rmap poderia ser utilizada para selecionar uma região do espaço recíproco que
se queira sondar auxiliado por uma GUI

Fonte: O autor.

Figura 8.2: A esquerda: célula de pressão DAC, mostrando sua restrição angular. A direita: espaço recíproco
disponível sob as restrições impostas pela DAC

Fonte: O autor.

20Do inglês Diamond Anvil Cell.
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APÊNDICE A � Tensor métrico

Podemos de�nir um sistema de coordenadas cristalográ�co cujo os vetores da base são: [a1,a2,a3].

Assim, um vetor nesse sistema tem sua representação dada por (GIACOVAZZO et al., 1992):

r = xa1 + ya2 + za3 = (a1,a2,a3)

xy
z

 = AX, (A-1)

em que AX é a matriz referente a base do sistema, enquanto X é a matriz de coordenadas.

Usando o sistema de coordenadas de�nido logo acima, podemos calcular o produto escalar entre dois

vetores r1 e r2 da seguinte forma:

r1 · r2 = (x1a1, y1a2, z1a3) · (x2a1, y2a2, z2a3)

= x1x2a
2
1 + y1y2a

2
2 + z1z2a

2
3 + (x1y2 + x2y1)a1a2 cos γ + (x1z2 + x2z1)a1a3 cosβ + (y1z2 + y2z1)a2a3 cosα.

Em notação matricial, temos:

r1 · r2 = (x1, y1, z1)

a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3

a3 · a1 a3 · a2 a3 · a3


x2

y2

z2

 = X1GX2. (A-2)

A matriz G é matriz métrica, também conhecida como tensor métrico. Seus elementos de�nem tanto o

módulo de a1,a2,a3 quanto os ângulos entre eles. E seu determinante, dado por

G = a2
1a

2
2a

2
3(1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ), (A-3)

é igual ao quadrado do volume da célula unitária.

De forma análoga a feita para rede direta, podemos de�nir o tensor métrico para a rede recíproca,

cuja a base dada pelos vetores da rede recíproca é da forma: [a∗1,a
∗
2,a
∗
3]. Escrevendo o tensor métrico temos:

G∗ =

a∗1 · a∗1 a∗1 · a∗2 a∗1 · a∗3
a∗2 · a∗1 a∗2 · a∗2 a∗2 · a∗3
a∗3 · a∗1 a∗3 · a∗2 a∗3 · a∗3

 , (A-4)

e temos que o produto:

G∗ ·G =

1 0 0

0 1 0

0 0 1

 , (A-5)

portanto G∗ = G−1 e det(G∗) = 1
det(G) .
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APÊNDICE B � Cálculo da matriz B

Em cristalogra�a, geralmente os cálculos geométricos são feitos em sistemas ortonormais, que envolve

então a transformação de base partindo do sistema de coordenada relacionada ao sistema cristalino em

questão. Representando um sistema de coordenadas com base ortonormal e o sistema de coordenadas do

cristal, respectivamente por (GIACOVAZZO et al., 1992):

E =

e1

e2

e3

 e A =

a1

a2

a3

 . (B-1)

Assim, temos a seguinte correlação feita pela matriz B, que descreve um sistema de coordenadas com relação

ao outro como E = BA e A = B−1E, ou de forma explicita:
a1

a1
a2

a2
a3

a3

 =

 l1 l2 l3

m1 m2 m3

n1 n2 n3


e1

e2

e3

 , (B-2)

em que (l1, l2, l3), (m1,m2,m3), e (n1, n2, n3) são os cossenos diretores dos vetores unitários a1

a1
, a2

a2
, a3

a3
em

E. Podemos reescrever a equação acima como:a1

a2

a3

 =

 a1l1 a1l2 a1l3

a2m1 a2m2 a2m3

a3n1 a3n2 a3n3


e1

e2

e3

 . (B-3)

Existem in�nitas maneiras pelas quais se pode ortonormalizar um sistema cristalográ�co. Por exem-

plo, se for tomado e1 ao longo de a∗1, e2 restringido a estar no plano de�nido pelos vetores (a∗1, a
∗
2) e e3 ao

longo de a3 temos nesse caso que a matriz B será (GIACOVAZZO et al., 1992):

B =

a
∗
1 a∗2 cos γ∗ a∗3 cosβ∗

0 a∗2 sin γ∗ −a∗3 sinβ∗ cosα

0 0 1
a3

 . (B-4)

Nela, β∗ e γ∗ são os ângulos entre os vetores da rede recíproca análogo aos da rede direta. Dessa forma, a

matriz B obedece a transformação E = BA que estamos interessados.
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